

This page intentionally left blank.

1

2

01 Getting Started with Android

Android is an open source operating system based on the Linux kernel,

middleware and key applicat ions for mobile devices. It is designed primarily

for touch screen mobile devices such as smartphones and tablet computers.

Android was developed by the Open Handset All iance, led by Google.

Android offers an integrated approach to app development for mobile

devices which means developers only need to develop for Android , and the

app should be able to run on different devices powered by Android . The

Android SDK provides the tools and APIs necessary to begin developing

applicat ions on the Android platform using the Java programming language.

The f irst beta version of the
Android Software Development Kit
(SDK) was released by Google in
2007 where as the f irst commercial
version, Android 1.0, was released
in September 2008. On June 27,
2012, at the Google I/O conference,
Google announced the next
Android version, 4.1 Jelly Bean.
Jelly Bean is an additional update,
with the primary goal of improving
the user interface, both in terms of
functionality and performance.

 Source code for Android is
avai lable under free and open
source software l icenses. Google
publishes most of the code under
Apache License version 2.0 and the
rest, the Linux kernel changed,
under GNU General Public License
version 2.

1.1
Explain what is

Android ?

3

01 Getting Started with Android

History of Android

Android, Inc. was founded in Palo Alto, California, in October 2003 by Andy

Rubin (founder of Danger), Rich Miner (founder of Wildfire Communicat ions,

Inc.) , Nick Sears (former VP of T-Mobile), and Chris White (Head of Design

and Development between WebTV interface) to develop “smart mobile

devices that are more aware of their location and preferences”.

The init ial goal of Android development was to develop an operating system

aimed at sophisticated digital cameras, but then they realized that the market

for the device was not large enough, and then turned to the development of

the Android smartphone market to compete with Symbian and Windows

Mobile.

Andy Rubin

Rich Miner

Nick Sears

Chris White

Figure 1-1: Founders and Developers of

Android Operating System

Figure 1-2: Founders and Developers of

4

01 Getting Started with Android

Android Versions

The development of the Android operating system was started in 2003 by

Android, Inc. Later, i t was purchased by Google in 2005. The version history

of the Android operating system began with the launch of Android 1.0 beta in

November 2007.

Since April 2009, each version of Android has been developed with a code

name based on a dessert item. The f irst Android version which was released

under the numerical order format was Android 10. API level is an integer value

that uniquely identif ies the API revision framework offered by the Android

platform version.

Android Versions, Name and API Level

Code name Version numbers API level Release date

No codename 1.0 1 September 23, 2008

No codename 1.1 2 February 9, 2009

Cupcake 1.5 3 April 27, 2009

Donut 1.6 4 September 15, 2009

Eclair 2.0 - 2.1 5 - 7 October 26, 2009

Froyo 2.2 - 2.2.3 8 May 20, 2010

Gingerbread 2.3 - 2.3.7 9 - 10 December 6, 2010

Honeycomb 3.0 - 3.2.6 11 - 13 February 22, 2011

Ice Cream Sandwich 4.0 - 4.0.4 14 - 15 October 18, 2011

Jelly Bean 4.1 - 4.3.1 16 - 18 July 9, 2012

KitKat 4.4 - 4.4.4 19 - 20 October 31, 2013

Lollipop 5.0 - 5.1.1 21- 22 November 12, 2014

Marshmallow 6.0 - 6.0.1 23 October 5, 2015

Nougat 7.0 24 August 22, 2016

Nougat 7.1.0 - 7.1.2 25 October 4, 2016

Oreo 8.0 26 August 21, 2017

Oreo 8.1 27 December 5, 2017

Pie 9.0 28 August 6, 2018

Android 10 10.0 29 September 3, 2019

Android 11 11 30 September 8, 2020

Table 1-1: Android version, code name and API level provided by Google

5

01 Getting Started with Android

Figure 1-3: Android Version Lists

Figure 1-4: The first commercially available smartphone running Android was the HTC
Dream, also known as T-Mobile G1, announced on September 23, 2008

6

01 Getting Started with Android

Features of Android

Android Features & Descriptions

Beautiful UI

 Android OS basic screen provides a beautiful and intuitive user interface.
Connectivity

 GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE, NFC and WiMAX.

Storage

 SQLite, a lightweight relational database, is used for data storage purposes.
Media Support

 H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC, AAC 5.1, MP3, MIDI, Ogg
Vorbis, WAV, JPEG, PNG, GIF, and BMP.

Messaging

 SMS and MMS
Web Browser

 Based on the open-source WebKit layout engine, coupled with Chrome's V8
JavaScript engine supporting HTML5 and CSS3.

Multi-Touch

 Android has native support for multi-touch which was initially made available in
handsets such as the HTC Hero.

Multi-Tasking

 User can jump from one task to another and same time various application can run
simultaneously.

Resizable Widgets

 Widgets are resizable, so users can expand them to show more content or shrink
them to save space.

Multi-Language

 Supports single direction and bi-directional text.
GCM

 Google Cloud Messaging (GCM) is a service that lets developers send short message
data to their users on Android devices, without needing a proprietary sync solution.

Wi-Fi Direct

 A technology that lets apps discover and pair directly, over a high-bandwidth peer-
to-peer connection.

Android Beam

 A popular NFC-based technology that lets users instantly share, just by touching two
NFC-enabled phones together.

Table 1-2: Features of Android

7

01 Getting Started with Android

Architecture of Android

Android is an open source, Linux-based software stack made for a wide variety

of devices and form factors. The following diagram shows the main

components of the Android operating system platform. Each section is

described in more detail below.

Figure 1-5: The Android Software Stacks

8

01 Getting Started with Android

Descriptions of Android Software Stack

Linux Kernel

 The basis of the Android platform for communication layer for
underlying hardware.

 Using the Linux kernel allows Android to take advantage of key
security features and allows device manufacturers to develop
hardware drivers for well-known kernels.

Hardware Abstraction Layer (HAL)

 The hardware abstraction (HAL) layer provides a standard interface
that showcases the hardware capabilit ies of a device to the higher-
end Java API framework.

 HAL consists of several l ibrary modules, each implementing an
interface for a specif ic type of hardware component, such as a
camera or Bluetooth module.

 When the skeleton API makes a call to access the device hardware,
the Android system loads the l ibrary module for that hardware
component.

Android Runtime (ART)

 Android Runtime (ART) is the appl icat ion process t ime environment
used by the Android operating system. ART performs a code
translation of application bytes into native instructions that are
then executed by the device’s run time environment.

 Some key features of ART include ahead-of-time (AOT) and just-in-
time (JIT) compilation, optimized garbage collection (GC) and
enhanced debugging support, including custom sampling prof ilers,
detailed diagnostic exceptions and fault reports, and the abil ity to
set monitoring points to monitor specif ic areas.

Native C/C++ Libraries

 Many core Android system components and services, such as ART
and HAL, are built from native code that requires native l ibraries
written in C and C ++.

 The Android platform provides a Java framework API to
demonstrate the functionality of some of these native l ibraries to
applicat ions.

9

01 Getting Started with Android

 If developers want to develop applications that require C or C ++
code, Android NDK can be used to access some of these native
platform libraries directly from native code.

Java API Framework

 The entire suite of Android OS features is available through APIs
written in Java which allows high-level interactions with the
Android system.

 These APIs form the building blocks needed to create Android
applicat ions by facil itating the reuse of modular system
components and services, which include the following:

i . A rich and extensive Display System that can be used to create
applicat ion UI, including l ists, grids, text boxes, buttons, and
even embeddable web browsers

i i . Resource Manager, provides access to non-code resources such
as strings, graphics, and local ized layout f i les

i i i . Notif ication Manager that allows al l applications to display
special alerts in the status bar

iv. Activity Manager that manages the application l ife cycle and
provides a common navigation layout

v. Content Providers that allow applications to access data from
other applications, such as the Contacts applicat ion, or to
share their own data

vi. Developers have full access to the same framework APIs used
by Android system applications.

System Applications

 Android comes with a bunch of core apps l ike the Browser, Camera,
Gallery, Music, Phone, Email, SMS messaging, Calendar and more.

 System applications serve both as appl ications for users and to
provide key capabilit ies that developers can access from their own
applicat ions.

 For example, if the user's appl icat ion wants to deliver an SMS
message, the user does not need to bui ld its own function, instead
the user can ask which SMS application is already instal led to
deliver the message to the specif ied recipient user.

Table 1-3: Android Software Stacks

10

01 Getting Started with Android

Android Devices in the Market

Mobile technology is gaining huge attention in the business and IT worlds.

This technology represents a dramatic change in the capacity of the

technology that enables potential economic advantages for those who can

take advantage of it . Mobile technology is the foundation of innovation in

reaching customers, and in redesigning business processes and software

products that led to the creation of many small businesses.

Android devices (phones and tablets) have a unique set of hardware and

software capabil it ies that make the way users interact with devices different

for each. To ful ly capture the capabilit ies of the device and not degrade the

user experience, developers must design such unique features.

Android devices originally used four hardware buttons to support the use of

the user’s device. These buttons are the Home Button , the Menu Button , the

Search Button , and the Back Button . Users can press one of these buttons at

any time during the use of the application, which will affect the functionality

of the applicat ion. The Home and Back buttons work without relying on code,

while the Menu and Search buttons only provide functionality if the

applicat ion is coded specif ically to use these buttons.

Figure 1-6: Android hardware buttons

11

01 Getting Started with Android

Before any work can begin on Android application development, the f irst step

is to configure the computer system to function as a development platform.

This involves a number of steps consisting of instal l ing the Java Development

Kit (JDK) and Android Studio Integrated Development Environment (IDE)

which also includes the Android Software Development Kit (SDK) .

Android application development can be done on one of the following

platforms. See below to see the minimum specs you need to play with your

Android device!

Windows

 64-bit Microsoft® Windows® 8/10

 x86_64 CPU architecture; 2nd generation Intel Core or newer, or AMD
CPU with support for a Windows Hypervisor

 8 GB RAM or more

 8 GB of available disk space minimum (IDE + Android SDK + Android
Emulator)

 1280 x 800 minimum screen resolution

Mac

 MacOS® 10.14 (Mojave) or higher

 ARM-based chips, or 2nd generation Intel Core or newer with support
for Hypervisor.Framework

 8 GB RAM or more

 8 GB of available disk space minimum (IDE + Android SDK + Android
Emulator)

 1280 x 800 minimum screen resolution

1.2
Set-up the

development
environment for Android

12

01 Getting Started with Android

Linux

 Any 64-bit Linux distribution that supports Gnome, KDE, or Unity DE;
GNU C Library (glibc) 2.31 or later

 x86_64 CPU architecture; 2nd generation Intel Core or newer, or AMD
processor with support for AMD Virtualization (AMD-V) and SSSE3

 8 GB RAM or more

 8 GB of available disk space minimum (IDE + Android SDK + Android
Emulator)

 1280 x 800 minimum screen resolution

Chrome
OS

 8 GB RAM or more recommended

 4 GB of available disk space minimum

 Intel i5 or higher (U series or higher) recommended

 1280 x 800 minimum screen resolution

Table 1-4: Android Studio specifications’ platforms

13

01 Getting Started with Android

Installing the Java Development Kit (JDK) and

Android Studio Package

Android Studio is available for computers running Windows or Linux , and for

Macs running macOS . OpenJDK (Java Development Kit) is integrated with

Android Studio.

The installat ion is similar for all platforms.

1. Navigate to the Android Studio download page located at the following

URL https://developer.android.com/studio and follow the instructions

to download and install Android Studio.

2. Accept the default configuration for all steps, and make sure all

components are selected for instal lation.

3. Once the installation is complete, the setup wizard downloads and

installs additional components, including the Android SDK. Be patient,

as this process may take some time, depending on your internet speed.

4. When the instal lation is complete, Android Studio starts, and you’re

ready to create your f irst project.

https://developer.android.com/studio

14

01 Getting Started with Android

TUTORIAL: Set Up the Development Environment for Android

Learning Outcomes:
By the end of this tutorial, you should be able to set up the development environment for
Android.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Download and Set-up Java Development Kit (JDK)

1. Download the latest version of Java JDK from Oracle's Java site

https://www.oracle.com/java/technologies/javase-downloads.html

2. Follow the given instructions to install and configure the setup.

3. Finally set PATH and JAVA_HOME environment variables to refer to the directory
that contains java and javac.

Alternatively, if using on Windows, right-click on My Computer, select Properties,
then Advanced, then Environment Variables. Then, update the PATH value and press
the OK button.

B. Download and Set-up Android Studio

4. Download the latest version android studio from Android Studio site

https://developer.android.com/studio

Figure 1-7: Download Android Studio from the Android Studio website

5. Run on windows machine according to android studio wizard guideline.

https://www.oracle.com/java/technologies/javase-downloads.html
https://developer.android.com/studio

15

01 Getting Started with Android

6. Launch Android Studio.exe .

Figure 1-8: Android Studio Setup launcher

7. Initiate JDK path or later version in android studio installer.

Figure 1-9: Android Studio Setup - JDK initiation

8. Check the components, which are required to create applications.

Figure 1-10: Android Studio Setup – Choose Components

16

01 Getting Started with Android

9. Specify the location of local machine path for Android Studio and Android SDK.

10. Specify the ram space for Android emulator by default it would take 512MB of local
machine RAM.

Figure 1-11: Android Studio Setup – Configuration Settings

11. At final stage, it would extract SDK packages into our local machine, it would take a

while time to finish the task and would take 2626MB of Hard disk space.

Figure 1-12: Android Studio Setup – Installing

12. After done all above steps perfectly, get finish button and it going to be open
Android Studio Project with Welcome to Android Studio message.

17

01 Getting Started with Android

Before moving on to a sl ightly more advanced topic, now is a good time to

verify that all the required development packages are installed and working

properly. The best way to achieve this is to create an Android app, compile

and run it. You wil l write Android applicat ions in the Java programming

language using an IDE called Android Studio. Android Studio is an IDE designed

specif ically for Android development .

This lesson describes how to create a s imple Android application project using

Android Studio. You wil l learn how to create a new Android project and create

"Hello, World!" project with Android Studio.

If you don't have a project opened, Android Studio shows the Welcome screen,

where you can create a new project by clicking Start a new Android Studio

project . If you do have a project opened, you start creating a new project by

selecting File > New > New Project from the main menu. You should then see

the Create New Project wizard, which lets you choose the type of project you

want to create and populates with code and resources to get you started.

Once the project is created, you will explore the use of the Android emulator

environment to run applicat ion tests.

1.3
Develop first Android

Application

18

01 Getting Started with Android

TUTORIAL: Develop First Android Application

Learning Outcomes:
By the end of this tutorial, you should be able to create a "Hello, World!" project with Android
Studio and run it.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Create a new project

1. Open Android Studio

2. In the Welcome to Android Studio dialog, click + Create New Project link

to get started.

Figure 1-13: Android Studio welcome screen

3. In the Select a Project Template Window, select Empty Activity . Click
Next .

19

01 Getting Started with Android

Figure 1-14: Select a Project Template Window

4. In the Configure Your Project window, use the following data of input for your
project:

 Give application a name such as My First Application .

 Select Java from the Language drop-down menu.

 Leave the defaults for the other fields.

5. Click Finish.

6. After some processing time, the Android Studio main window appears.

Figure 1-15: Android Studio main window

20

01 Getting Started with Android

B. Explore the Project Structure and files

7. First, be sure the Project window is open (select View > Tool Windows >
Project) and the Android view is selected from the drop-down list at the top of
that window.

Figure 1-16: Review the generated Project Structure and files

8. In the Project > Android view you see four top-level folders below your app

folder: manifests, java, res and Gradle Scripts .

9. Expand the manifests folder.

app > manifests > AndroidManifest.xml

The manifest file describes all the components of your Android app and is read
by the Android runtime system when your app is executed.

10. Expand the java folder. All your Java language files are organized here.

app > java > com.example.myfirstapp > MainActivity

This is the main activity that contains the Java source code files for your
Android app. It's the entry point for your app. When you build and run your
app, the system launches an instance of this Activity and loads its layout.

21

01 Getting Started with Android

11. Expand the res folder. This folder contains all the resources for your Android app,
including images, layout files, strings, icons, and styling.

app > res > layout > activity_main.xml

This XML file defines the layout for the activity's user interface (UI). It contains
a TextView element with the text "Hello, World!"

12. Expand the Gradle Scripts folder.

Gradle Scripts > build.gradle

There are two files with this name: one for the project "Project: My_First_
Application" and one for the app module "Module:
My_First_Application.app". Each module has its own build.gradle file.
Each module's build.gradle file use to control how the Gradle plugin builds
app.

C. Create Android Virtual Device (AVD)

13. To create a new AVD, open the AVD Manager via the Tools > AVD Manager
menu tab.

14. Define AVD by clicking the Create Virtual Device button, at the bottom of the
AVD Manager dialog (Figure 1-17).

Figure 1-17: Android Virtual Device Manager

15. The Select Hardware dialog appears (Figure 1-18). Select values and then click
Next .

22

01 Getting Started with Android

16. Notice that only some hardware profiles are indicated to include Play Store . This
indicates that these profiles are fully CTS compliant (Compatibility Test Suite) and
may use system images that include the Play Store app.

Figure 1-18: Virtual Device Configuration – Device Definition

17. The System Image dialog appears (Figure 1-19). Select the latest API level for
AVD, and then click Next .

 The Recommended tab lists recommended system images. The other tabs
include a more complete list.

 If you see Download next to the system image, you need to click it to
download the system image. You must be connected to the internet to
download it.

Figure 1-19: Virtual Device Configuration – System Image

https://source.android.com/compatibility/cts/

23

01 Getting Started with Android

18. The Verify Configuration dialog appears (Figure 1-20). Afterwards, click
Finish button. This will create the AVD configuration and display it under the list
of available virtual devices.

Figure 1-20: Virtual Device Configuration – Verify Configuration

19. The AVD appears in the Your Virtual Devices dialog (Figure 1-21). You can now
ready to deploy and run your application on this virtual device.

Figure 1-21: Android Virtual Device Manager - Your Virtual Devices page

24

01 Getting Started with Android

D. Run your app on an emulator

20. In the toolbar, select your app from the run/debug configurations drop-down

menu.

21. From the target device drop-down menu, select the AVD emulator that you want
to run your app on.

Figure 1-22: AVD emulator selection

22. Click Run .

23. The AVD emulator starts and boots just like a physical device. Depending on the
speed of your computer, this may take a while. You can look in the small horizontal
status bar at the very bottom of Android Studio for messages to see the progress.

Messages that might appear briefly in the status bar

1. Gradle build running

2. Waiting for target device
to come online

3. Installing APK

4. Launching activity

Table 1-5: AVD Emulator activities

25

01 Getting Started with Android

24. Once your app builds and the emulator is ready, Android Studio uploads the app
to the emulator. You now see "Hello, World!" displayed in the app.

Figure 1-23: Android Studio environment

E. Import an existing project

To import an existing, local project into Android Studio, proceed as follows:

1. Click File > New > Import Project .
2. In the window that appears, navigate to the root directory of the project you want

to import.
3. Click OK .

Android Studio then opens the project in a new IDE window and indexes its contents.

26

27

02 Set-up The Development Environment for Android

Illustrate Activity Life Cycle

Activity in Android is one of the most important components of Android. It is

the Activity where we put the UI of our application. Therefore, if we are new

in Android development then we have to learn what is Activity on Android and

what is the l ife cycle of Activity.

A. About the Activity

Every time we open the Android app, you will see some UI drawn on our

screen. The screen is called Activity . An Activity represents a s ingle screen

with a user interface just l ike window or frame and provides a visual

interface for user interaction. It is the basic component of Android and

every time you open an app, then we are opening some act ivit ies. Each

Activity usually supports one thing that the user can do , such as viewing

an email message or showing a login screen.

For example:
When we open our Gmail app, then we see our email on the screen. The

email is avai lable in Activit ies. If we open some specif ic email, then that

email wil l be opened in some other Activity.

In Android, Activity is where the Android Application begins its process.

An Activity is an application user interface screen. There are a series of

methods carr ied out in an Activity . Applicat ions often comprise several

activit ies.

In this chapter you learn about the activity l ifecycle, the cal lback events you

can implement to perform tasks in each stage of the l ifecycle, and how to

handle Activity instance states throughout the activity l ifecycle.

2.1
Design Application

User Interface

28

02 Set-up The Development Environment for Android

B. About the Activity Lifecycle

The activity l ifecycle is the set of states an act ivity can be in during its
entire l ifetime, from the time it 's created to when it 's destroyed and the
system reclaims its resources. As the user interacts with your app and
other apps on the device, activit ies move into different states.

For example (refer Figure 2-24):

1. When you start an app, the app's mai n activity ("Activity 1" in the
f igure below) is started, comes to the foreground, and receives
the user focus.

2. When you start a second activity (" Activity 2" in the f igure
below), a new activity is created and started, and the main
activity is stopped.

3. When you're done with the Activity 2 and navigate back, Activity

1 resumes. Activity 2 stops and is no longer needed.

4. If the user doesn't resume Activity 2 , the system eventually
destroys it .

Figure 2-24: The activity lifecycle process

29

02 Set-up The Development Environment for Android

C. Activity States and Lifecycle Callback Methods

In general, activity l i fecycle has SEVEN (7) Callback Methods . Let's see the

seven (7) l ifecycle methods of android Activity. The seven (7) l ifecycle

method of Activity describes how activity wil l behave at different states.

Figure 2-25 below shows each of the Activity states and the callback

methods that occur as the Activity transitions between different states.

Figure 2-25: The Activity states and lifecycle callback methods

30

02 Set-up The Development Environment for Android

The Activity l ifecycle consists of 7 methods:

Method Description

onCreate called when activity is f irst created.

onStart called when activity is becoming vis ible to the user.

onResume called when activity wil l start interacting with the user.

onPause called when activity is not visible to the user.

onStop called when activity is no longer visible to the user.

onRestart called after your activity is stopped, prior to start.

onDestroy called before the act ivity is destroyed.

Table 2-6: Activity Lifecycle’s methods

Figure 2-26: The Activity states and lifecycle callback methods

Depending on the complexity of your Activity , you probably don't need to

implement all the l ifecycle callback methods in an Activity . However, it 's

important that you understand each one and implement those that ensure

your app behaves the way users expect.

31

02 Set-up The Development Environment for Android

TUTORIAL: Android Activity Lifecycle methods

Learning Outcomes:
By the end of this tutorial, you should be able to create android app that will displaying the
content on the logcat which show the activity life cycle.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Create android app to show the activity life cycle on the logcat

1. Open Android Studio and create new project. Name it as ActivityLifeCycle .

Create your package as well. It should be name as
com.example.activitylifecycle . Click Finish .

2. In the MainActivity.java , change the code in the onCreate() method as
shown below:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Log.d("lifecycle","onCreate invoked");
}

3. Then, still in MainActivity.java , add all the method in Activity Life Cycle , as

shown below.

@Override
protected void onStart() {
 super.onStart();
 Log.d("lifecycle","onStart invoked");
}

@Override
protected void onResume() {
 super.onResume();
 Log.d("lifecycle","onResume invoked");
}

@Override
protected void onPause() {
 super.onPause();
 Log.d("lifecycle","onPause invoked");
}

32

02 Set-up The Development Environment for Android

@Override
protected void onStop() {
 super.onStop();
 Log.d("lifecycle","onStop invoked");
}

@Override
protected void onRestart() {
 super.onRestart();
 Log.d("lifecycle","onRestart invoked");
}

@Override
protected void onDestroy() {
 super.onDestroy();
 Log.d("lifecycle","onDestroy invoked");
}

4. Import the util.Log package in your MainActivity.java.

import android.util.Log;

5. Leave your activity_main.xml file just the way it is. Now, run your program.

You will not see any output on the AVD emulator or device. You need to open
logcat .

Figure 2-27: AVD emulator

33

02 Set-up The Development Environment for Android

6. See on the logcat: onCreate , onStart and onResume methods are invoked.

Figure 2-28: onCreate, onStart and onResume methods

7. When you run your app for the first time, in the logcat, it shows that the first

method that invoke is oncreate , and then onstart and onResume.

8. Now click on the HOME button. You will see in the logcat, method onPause and
onStop are invoked.

Figure 2-29: onPause and onStop methods

9. Now see on the emulator. It is on the HOME . Now click on the center button to

launch the app again.

10. Now, click on the ActivityLifeCycle icon to launch the app again.

34

02 Set-up The Development Environment for Android

Figure 2-30: HOME

Figure 2-31: ActivityLifeCycle icon

11. Now, see on the logcat: onRestart , onStart and onResume methods are

invoked.

Figure 2-32: onRestart , onStart and onResume methods

35

02 Set-up The Development Environment for Android

12. If you see the emulator, application is started again.

Figure 2-33: ActivityLifeCycle started again

13. You also can do other task such as open another app. As you do that, it also will
invoke the onPause and onStop method.

14. Now click on the Back button (closed the app). You will see method onPause ,
onStop and onDestroy will be invoke. And that’s how its explain the Activity
Life Cycle.

Figure 2-34: onPause, onStop and onDestroy methods

36

02 Set-up The Development Environment for Android

User Interface (UI) of Android Application

A. User Interfaces

The UI is placed on the Activity via the Activity's setContentView() method.

In Android, the UI composes of View and ViewGroup objects, organized in

a single view-tree structure. Once a view -tree is constructed, you can add

the root of the view-tree to the Activity as the content view via Activity's

setContentView() method.

B. View

The f irst thing in Android you need to learn is something cal led Views . A

View is a rectangular area visible on the screen where the user can see and

interact with. A View is an interactive UI component , widget or control,

such as TextView , EditText , Button , RadioButton , etc. , in package

android.widget . It has a width and height, and sometimes a background

color. A View is responsible for drawing itself and handling events such as

clicking and entering texts.

The i l lustrat ion

(Figure 2-35) shows

Views of three

different types.

An ImageView

displays an image

such as an icon or

photo. A TextView

displays text. A

Button is a TextView

that is sensitive to

touch: tap it with

your f inger and it

wil l respond.

Figure 2-35: Views

37

02 Set-up The Development Environment for Android

C. ViewGroup

ViewGroup is an invisible container that defines the layout structure for

View components. There are many types of ready-to-use ViewGroups in

Android. Fol lowing are the commonly used ViewGroup subclasses in

android applications:

Linear Layout, Relative Layout, Table Layout, Frame Layout,

Web View, List View and Grid View.

A ViewGroup is a big View that can contain smaller Views inside of it . The

smaller Views are called the children of the ViewGroup and might be

TextViews or ImageViews . The ViewGroup is cal led the parent of its

children. The i l lustration (Figure 2-36) shows one of the most common

ViewGroups , a vertical LinearLayout .

The ViewGroup itself might be transparent, serving only to contain and

position its children. Its children, however, will almost always be visible.

ViewGroup has height, width, background color and other a ttributes, even

its also can be transparent bacground.

Figure 2-36: ViewGroups

the invisible container that holds View and ViewGroup

38

02 Set-up The Development Environment for Android

D. XML Tag

The XML is a notation for writing a f i le containing pieces of information

called elements . To indicate where an element begins and ends, we write

tags. A tag is easy to recognize because it always begins and ends with the

characters < and > . An element often consists of a pair of tags, plus all the

content between them. The standard structure of XML tag looks l ike this:

<tag_name
 attribute 1_name="attribute1_value"
 attribute 2_name="attribute 2_value"
 attributeN_name="attributeN_value" >

 some content

</tag_name>

An element that does not need to enclose any content can consist of a

single tag. In this case, the tag ends with the characters /> and we say that

it is a self-closing tag . The standard structure of XML self-closing tag looks

l ike this:

<tag_name
 attributes..
 attributes..
/>

Sample code:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="TextView"
 android:textSize="20sp"
 android:background="#000000"
 android:textColor="#FFFFFF"
 />

</LinearLayout>

self-closing tag

Standard

structure of

XML tag

39

02 Set-up The Development Environment for Android

E. Android Defining Styles

To create an Android defining style , we need to follow the below steps:

 We need to add <style> element in the XML fi le with a name

attribute to uniquely identify the style.

 To define attributes of style , we need to add an <item> e lements

with a name that defines a style attr i bute and we need to add

appropriate value to each <item> e lement.

Following is the example of defining a style in separate XML fi le using

<style> element. We created a style “TextviewStyle” with all required style

attributes.

<style name="TextviewStyle">
 <item name="android:id">textView</item>
 <item name="android:layout_width">wrap_content</item>
 <item name="android:layout_height">wrap_content</item>
 <item name="android:text">TextView</item>
 <item name="android:textSize">20sp</item>
 <item name="android:backround">#000000</item>
 <item name="android:textColor">#FFFFFF</item>
</style>

F. Density Independence Pixels

Density Independent Pixel is an abstract unit that is based on the density

of a screen. These units help maintain UI elements with the same physical

dimensions across different density devices while maintaining the

element's sharpness. The denser the scree n, the more pixels are needed to

maintain the same physical dimensions. In Android Development, we have

seen many developers using device-independent pixels (dp) and scale-

independent pixels (sp) as a measurement unit for all the views. Both dp

and sp follow the concept of density and can be used almost identically,

albeit with a few differences.

Device-Independent Pixels (dp) Scale-Independent Pixels (sp)

It used for defining the sizes in
all widgets, ranging from

TextView to LinearLayout.

It is used for defining text size ,
as it scales according to the font

size preference on a mobile
device.

40

02 Set-up The Development Environment for Android

Sample code:

<Button
 android:layout_width="75dp"
 android:layout_height="60dp"
 android:textSize="18sp"
/>

G. Hex Color (Hexadecimal Color)

A color is created by mixing together red, green, and blue, in that order.

Write a hash sign (#) and then specify the amount of each component with

a pair of “hexadecimal digits” where 00 is the minimum amount, FF is the

maximum, and 80 is halfway. You can directly specify the value as HEX color

code as we do for CSS f i les in HTML.

Sample code:

android:background="#FFFFCC"
android:textColor="#9C27B0"

41

02 Set-up The Development Environment for Android

TUTORIAL: Create User Interface of Android Application

Learning Outcomes:
By the end of this tutorial, you should be able use the Android Studio Layout Editor to create
a layout that includes a textbox and a button.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Open the Layout Editor

1. In the Project window, open app > res > layout > activity_main.xml.

2. If your editor shows the XML source, click the Design tab at the top right of the

window.

Figure 2-37: The Layout Editor showing activity_main.xml

3. The Component Tree panel shows the layout's hierarchy of views. In this case,

the root view is a ConstraintLayout , which contains just one TextView object.

42

02 Set-up The Development Environment for Android

4. Notice the Palette at the top left of the layout
editor. Move the sides if you need to, so that you
can see many of the items in the palette.

5. Click on some of the categories, and scroll the listed
items if needed to get an idea of what's available.

B. TextView with example in Android Studio

6. TextView displays text to the user and optionally allows them to edit it

programmatically.

TextView code in XML:

<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintHorizontal_bias="0.247"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

7. Attributes of TextView :

 id: used to uniquely identify a text view.

 layout_width: specifies the basic width of the view.

 layout_height: specifies the basic height of the view.

 text: used to set the text in a text view.

 wrap_content: the view expands only as much as needed to fit its
contents.

Figure 2-38: Palette

43

02 Set-up The Development Environment for Android

C. Add Button and constrain the position

8. Let’s add Button and align the baselines by
move the cursor over the circle at the top of the
Button onto the circle at the top of the
TextView .

Button code in XML:

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="50dp"
 android:layout_marginLeft="50dp"
 android:text="Button"
 app:layout_constraintStart_toEndOf="@+id/textView"
 app:layout_constraintTop_toTopOf="@+id/textView" />

9. To delete an individual constraint, hover over the circular handle and click it has it

turns thick line and then Delete .

Figure 2-40: Deleting constraints

10. Before adding another Button , relabel this Button so things are a little clearer

about which Button is which.

 Click on the Button you just added in the design layout.

 Look at the Attributes panel on the right, and notice the id field.

 Change the id from button to second_button .

11. You can go ahead and try replacing some of your own layouts with a constraint

layout.

Figure 2-39: The Button is
aligned with the TextView

44

02 Set-up The Development Environment for Android

Organize Layout

A layout defines the structure for a user interface in Android application, such

as in an activity. Al l elements in the layout are built using a hierarchy of View

and ViewGroup objects. A View usually draws something the user can see and

interact with. Whereas a ViewGroup is an invisible container that defines the

layout structure for View and other ViewGroup objects, as shown in f igure

below.

Figure 2-41: Illustration of a view hierarchy, which defines a UI layout.

45

02 Set-up The Development Environment for Android

Types of Layouts

A. Frame Layout - placeholder on screen that you can use to display a single
view

Framelayout is a ViewGroup

subclass that is used to specify the

position of View instances it

contains on the top of each other

to display only s ingle View inside

the FrameLayout . In simple

manner, FrameLayout is designed

to block out an area on the screen

to display a single item.

Figure 2-42: The pictorial representation of

FrameLayout in android applications

In android, FrameLayout wil l act as a placeholder on the screen, and it is

used to hold a single child view. In FrameLayout , the chi ld views are added

in a stack and the most recently added child will show on the top. We can

add multiple chi ldren views to FrameLayout and control their position by

using gravity attributes in FrameLayout .

Sample code:

<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <ImageView
 android:id="@+id/imageView"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerCrop"
 app:srcCompat="@drawable/orange" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="40sp"
 android:text="This activity using"
 android:textSize="28sp"
 android:background="#4C374A"

46

02 Set-up The Development Environment for Android

 android:textColor="#FFFFFF" />

 <TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="right|bottom"
 android:layout_marginBottom="40sp"
 android:text="Frame Layout"
 android:textSize="28sp"
 android:background="#4C374A"
 android:textColor="#FFFFFF" />

</FrameLayout>

Figure 2-43: Output of Android FrameLayout example

47

02 Set-up The Development Environment for Android

B. Linear Layout - aligns all children in a single direction, vertically or
horizontally

LinearLayout is a ViewGroup subclass which is used to render all child View

instances one by one either in Horizontal direction or Vertical direction

based on the orientation property. LinearLayout orientation can be

specif ied using android:orientation attr ibute.

In LinearLayout , the chi ld View instances arranged one by one, so the

horizontal l ist wil l have only one row of multiple columns and vertical l ist

wil l have one column of multiple rows.

Figure 2-44: The pictorial representation of LinearLayout in android applications

Sample code:

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <EditText
 android:id="@+id/txtTo"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="To"/>
 <EditText
 android:id="@+id/txtSub"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="Subject"/>
 <EditText
 android:id="@+id/txtMsg"
 android:layout_width="match_parent"

48

02 Set-up The Development Environment for Android

 android:layout_height="0dp"
 android:layout_weight="1"
 android:gravity="top"
 android:hint="Message"/>
 <Button
 android:layout_width="100dp"
 android:layout_height="wrap_content"
 android:layout_gravity="right"
 android:text="Send"/>

</LinearLayout>

Figure 2-45: Output of Android LinearLayout example

49

02 Set-up The Development Environment for Android

C. Table Layout - groups views into rows and columns

TableLayout is a ViewGroup

subclass that is used to display the

child View elements in rows and

columns. In android, TableLayout

wil l position its chi ldren’s

elements into rows and columns,

and it won’t display any border

l ines for rows, columns, or cells.

The TableLayout in android wil l

work same as the HTML table and

the table will have as many

columns as the row with the most

cells. The TableLayout can be

explained as <table> and

TableRow is l ike <tr> element.

Figure 2-46: The pictorial representation of

TableLayout in android applications

Sample code:

<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginTop="100dp"
 android:paddingLeft="10dp"
 android:paddingRight="10dp" >

 <TableRow android:background="#33FCFF" android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Student Id" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="User Name" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Location" />
 </TableRow>

50

02 Set-up The Development Environment for Android

 <TableRow android:background="#DAE8FC" android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="1" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Suzana Dasari" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Dungun" />
 </TableRow>

 <TableRow android:background="#DAE8FC" android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="2" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Rohana Alisha" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Kuala Terengganu" />
 </TableRow>

 <TableRow android:background="#DAE8FC" android:padding="5dp">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="3" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Trisha Divasini" />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Besut" />
 </TableRow>

</TableLayout>

51

02 Set-up The Development Environment for Android

Figure 2-47: Output of Android TableLayout example

52

02 Set-up The Development Environment for Android

D. Relative Layout - displays child views in relative positions

RelativeLayout is a ViewGroup

which is used to specify the

position of child View instances

relative to each other (Child A to

the left of Child B) or relative to

the parent (aligned to the top of

parent). In android,

RelativeLayout is very useful to

design user interface because by

using RelativeLayout we can

eliminate the nested view groups

and keep our layout hierarchy f lat,

which improves the performance

of application.

Figure 2-48: The pictorial representation of
RelativeLayout in android applications

In RelativeLayout we need to specify the position of child views relative

to each other or relative to the parent. In case if we didn’t specify the

position of child views, by default all chi ld views are positioned to top -left

of the layout.

Sample code:

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="10dp"
 android:paddingRight="10dp" >

 <Button
 android:id="@+id/btn1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:text="Button1" />

 <Button
 android:id="@+id/btn2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:layout_centerVertical="true"
 android:text="Button2" />

53

02 Set-up The Development Environment for Android

 <Button
 android:id="@+id/btn3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentLeft="true"
 android:layout_centerVertical="true"
 android:text="Button3" />

 <Button
 android:id="@+id/btn4"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Button4" />

 <Button
 android:id="@+id/btn5"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBottom="@+id/btn2"
 android:layout_centerHorizontal="true"
 android:text="Button5" />

 <Button
 android:id="@+id/btn6"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/btn4"
 android:layout_centerHorizontal="true"
 android:text="Button6" />

 <Button
 android:id="@+id/btn7"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toEndOf="@+id/btn1"
 android:layout_toRightOf="@+id/btn1"
 android:layout_alignParentRight="true"
 android:text="Button7" />

</RelativeLayout>

54

02 Set-up The Development Environment for Android

Figure 2-49: Output of Android RelativeLayout example

55

02 Set-up The Development Environment for Android

E. Grid Layout

In Android GridLayout , we can

specify the number of columns and

rows that the grid wil l have. We

can customize the GridLayout

according to our requirements,

l ike setting the size, color or the

margin for the Layout.

A GridLayout basically places its

children in a rectangular grid. This

grid has a set of a number of thin

l ines that separate the view area

into cel ls. Suppose you have a grid

of N columns, then we will have

N+1 grid indices that would be

starting from 0.

The number of rows and columns

within the grid can be declared

using the android:rowCount and

android:columnCount properties.

Figure 2-50: The pictorial representation of

GridLayout in android applications

Sample code:

<GridLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/GridLayout1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:columnCount="2"
 android:rowCount="2" >

 <Button
 android:id="@+id/button1"
 android:layout_gravity="left|top"
 android:text="Button 1" />

 <Button
 android:id="@+id/button2"
 android:layout_gravity="left|top"
 android:text="Button 2" />

 <Button
 android:id="@+id/button3"
 android:layout_gravity="left|top"
 android:text="Button 3" />

56

02 Set-up The Development Environment for Android

 <Button
 android:id="@+id/button4"
 android:layout_gravity="left|top"
 android:text="Button 4" />

</GridLayout>

Figure 2-51: Output of Android GridLayout example

57

02 Set-up The Development Environment for Android

Layout Attributes

Each layout has a set of attributes which define the visual properties of that

layout. There are few common attributes among al l the layouts and their are

other attributes which are specif ic to that layout.

Following are common attributes and wil l be app lied to all the layouts.

Attribute Description

android:id Specifies the ID which uniquely identifies the view.

android:layout_width Specifies the width of the layout.

android:layout_height Specifies the height of the layout

android:layout_marginTop
Specifies the extra space on the top side of the

layout.

android:layout_marginBottom
Specifies the extra space on the bottom side of the

layout.

android:layout_marginLeft
Specifies the extra space on the left side of the

layout.

android:layout_marginRight
Specifies the extra space on the right side of the

layout.

android:layout_gravity Specifies how child Views are positioned.

android:layout_weight
Specifies how much of the extra space in the

layout should be allocated to the View.

android:layout_x Specifies the x-coordinate of the layout.

android:layout_y Specifies the y-coordinate of the layout.

android:layout_width Specifies the width of the layout.

android:paddingLeft Specifies the left padding filled for the layout.

android:paddingRight Specifies the right padding filled for the layout.

android:paddingTop Specifies the top padding filled for the layout.

android:paddingBottom Specifies the bottom padding filled for the layout.

Table 2-7: Layout attributes

58

02 Set-up The Development Environment for Android

Adapt to Display Orientation

The screenOrientation , also known as screen rotation or display orientation

is the attribute of activity element. The orientation of android activity can be

portrait, landscape, sensor, unspecif ied etc. You need to define it in the

AndroidManifest.xml f i le.

Sample code:

<activity android:name="package_name.Your_ActivityName"
android:screenOrientation="orientation_type">

</activity>

Example:

<activity android:name=".MainActivity"

android:screenOrientation="portrait">
</activity>

<activity android:name=".SecondActivity"

android:screenOrientation="landscape">
</activity>

Figure 2-52: Display orietation

PORTRAIT

LANDSCAPE

59

02 Set-up The Development Environment for Android

TUTORIAL: Change Display Orientation

Learning Outcomes:
By the end of this tutorial, you should be able to change screen orientation for Landscape and
Portrait mode.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Creating the Activities

1. Create two (2) activities of different screen orientation. The first activity will be as

“portrait” orientation and Second activity as “landscape” orientation state.

2. Creating the XML file:

 activity_main.xml : XML file for first activity consist of constraint layout
with Button and TextView in it. This activity is in Potrait state.

<TextView
 android:id="@+id/textView"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Potrait Orientation" />

<Button
 android:id="@+id/btnNext"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:onClick="onClick"
 android:text="Next Activity" />

 activity_next.xml : XML file for second activity consist of constraint
layout with TextView in it. This activity is in Landscape state.

<TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Landscape Orientation" />

60

02 Set-up The Development Environment for Android

3. Creating the Java file:

 MainActivity.java : Java file for Main Activity, in which setOnClick()
listener is attached to the button to launch next activity with different
orientation.

public class MainActivity extends AppCompatActivity {

 // declare button variable
 Button button;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // initialise button with id
 button = findViewById(R.id.btnNext);
 }

 // onClickListener attached to button
 // to send intent to next activity
 public void onClick(View v){
 // Create instance of intent and
 // startActivity with intent object
 Intent intent = new Intent(MainActivity.this,
 NextActivity.class);
 startActivity(intent);
 }
}

 NextActivity.java : Java file for Next Activity, which is in Landscape
orientation.

public class NextActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_next);
 }
}

61

02 Set-up The Development Environment for Android

4. Updating the AndroidManifest file: In AndroidManifest.xml file, add the
screenOrientation state in activity along with its orientation. Here, we provide
“portrait” orientation for MainActivity and “landscape” for NextActivity .
Below is the code for AndroidManifest file.

 Define potrait orientation for MainActivity:

<activity android:name=".MainActivity"
 android:screenOrientation="portrait">

 Define landscape orientation for NextActivity:

<activity android:name=".NextActivity"
 android:screenOrientation="landscape">

5. Now, run your program. You will see output on the emulator or device.

Figure 2-53: Display orientation output

62

02 Set-up The Development Environment for Android

Add Notifications and Actions to the Action Bar

Notifications are messages that Android displays outside of your app’s UI to

give users alerts, reminders, communications from others, or other real -t ime

information from your app. Users can tap the notif ication to open your app or

take act ion directly from the notif ic ation. Notifications appear to users in

different locations and formats, such as icons in the status bar, more detailed

entries in the notif ication drawer, as badges on app icons, and on

automatically paired devices.

Status Bar and Notif ication Drawer

1. When you issue a notif ication, it f irst appears as an icon in the status

bar.

Figure 2-54: Status bar

2. Users can swipe down on the status bar to open the notif ication drawer,
where they can see more details and take action with the notif ication.

Figure 2-55: Notif ication drawer

3. Users can drag notif ications in the drawer to show an expanded view,
which shows additional content and action buttons, if pr ovided.

4. Notif ications remain visible in the notif ication drawer until terminated
by an application or user.

The status bar contains the clock,
battery icon, and other notification
icons as shown in an image. Most of
the time, it is at the top of the
screen.

The status bar contains the clock,
battery icon, and other notification
icons as shown in an image. Most of
the time, it is at the top of the
screen.

63

02 Set-up The Development Environment for Android

Notification Anatomy

The design of a notif ication is determined by system templates.

Figure 2-56: A notification with basic details

The most common parts of a notif ication are indicated in Figure 2-56 as

follows:

1. Small icon : This is required and set with setSmallIcon().

2. App name: This is provided by the system.

3. Title : This is optional and set with setContentTitle() .

4. Text : This is optional and set with setContentText() .

Action Bar

The Action Bar , if it exists for an activity, wi l l be at the top of the activity’s

content area, typically direct ly underneath the status bar. It is a menu bar

that runs across the top of the activity screen in android. Android ActionBar

can contain menu items that become visible when the user cl icks the “ menu”

button.

Figure 2-57: Action bar

1

1

2

3

4

64

02 Set-up The Development Environment for Android

TUTORIAL: Create a Basic Notification

Learning Outcomes:
By the end of this tutorial, you should be able to create a notification that the user can click
on to launch an activity in your app.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Set the notification content and notification’s tap action

1. Create two (2) activities. The first activity will be as “MainActivity” consist of

Button and TextView in it and second activity as “NotificationActivity”
consist of TextView in it.

2. In the MainActivity.java , add showNotification() method as shown below.

 To get started, you need to set the notification's content and channel using
a NotificationCompat.Builder object.

 Every notification should respond to a tap, usually to open an activity in
your app that corresponds to the notification. To do so, you must specify a
content intent defined with a PendingIntent object and pass it to
setContentIntent() .

private void showNotification(Intent i) {

 PendingIntent pendingIntent = PendingIntent.getActivity(MainActivity.this,
 0, i, PendingIntent.FLAG_UPDATE_CURRENT);

 //Set the notification content
 NotificationCompat.Builder builder
 = new NotificationCompat.Builder(MainActivity.this, "MYChannel")
 .setSmallIcon(R.drawable.ic_baseline_announcement)
 .setContentTitle("My Notification")
 .setContentText("Hello world!! Let's create notification")
 .setPriority(NotificationCompat.PRIORITY_DEFAULT)

 //Set the intent that will fire when the user taps the notification
 .setContentIntent(pendingIntent)
 .setAutoCancel(true);

 //Show the notification
 NotificationManager notificationManager
 = (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
 notificationManager.notify(NOTIFICATION_ID, builder.build());

}

65

02 Set-up The Development Environment for Android

B. Create a channel and set the importance

3. Still in the MainActivity.java , add createNotificationChannel() method as
shown below.

private void createNotificationChannel() {

 // Create the NotificationChannel, but only on API 26+ because
 // the NotificationChannel class is new and not in the support library
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {

 CharSequence name = "MY Channel";
 String description = "Channel for MY notifications";
 int importance = NotificationManager.IMPORTANCE_DEFAULT;

 NotificationChannel channel = new NotificationChannel("MYChannel",
 name, importance);
 channel.setDescription(description);

 // Register the channel with the system; you can't change the importance
 // or other notification behaviors after this
 NotificationManager notificationManager =
 getSystemService(NotificationManager.class);
 notificationManager.createNotificationChannel(channel);
 }
}

C. Modify the onCreate() method

4. Change the code in the onCreate () method as shown below.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //call method
 createNotificationChannel();

 btnNotify = (Button) findViewById(R.id.buttonNoti);
 getSupportActionBar().setSubtitle("Let's create notification.");

 //function for button notification
 btnNotify.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 //Create an explicit intent for an Activity in app
 Intent i = new Intent(getApplicationContext(),
 NotificationActivity.class);
 i.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 //call method
 showNotification(i);
 }
 });

}

66

02 Set-up The Development Environment for Android

5. Now, run your program. You will get output of the notification app as shown below.

Figure 2-58: Notification icons appear on the left side of the status bar

 Figure 2-59: A notification with a title and text in the notification drawer

67

02 Set-up The Development Environment for Android

Design User Interface with View

In Android applications, various types of ViewGroups are used to design UI.

The following are Basic Views in Android applicat ions.

 TextView

 EditText

 Button

 ImageButton

 CheckBox

 ToggleButton

 RadioBtton

 RadioGroup

68

02 Set-up The Development Environment for Android

TUTORIAL: Create a Basic Views

Learning Outcomes:
By the end of this tutorial, you should be able to create basic views in android applications.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Implementation

1. Create a new Android project called AppView .

2. By default, it creates activity_main.xml file which contains a TextView element.

3. Design the layout - use LinearLayout .

<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".MainActivity">

</LinearLayout>

4. The TextView is used to display text/caption to the user. This is the most basic

View and very frequently used in an application.

<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

5. The next View is a subclass of TextView and it is EditText . This View allows the

user to edit the text displayed.

<EditText
 android:id="@+id/txtUserName"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

69

02 Set-up The Development Environment for Android

6. Button represents a push-button widget.

<Button
 android:id="@+id/btnAdd"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="ADD" />

7. ImageButton is similar to Button View except that it displays an image with text.

<ImageButton
 android:id="@+id/imgButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 app:srcCompat="@android:drawable/btn_star_big_on" />

8. CheckBox is a type of button that has two states; i.e., checked or unchecked.

<CheckBox
 android:id="@+id/chkStudent"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Student" />

<CheckBox
 android:id="@+id/chkStaff"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Staff" />

9. RadioGroup and RadioButton , both have two states: either checked or
unchecked. A RadioGroup is used to group together one or more RadioButton
Views , thereby allowing only one RadioButton to be checked within the
RadioGroup .

<RadioGroup
 android:id="@+id/rdGroup"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

<RadioButton
 android:id="@+id/rbMale"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Male" />

<RadioButton
 android:id="@+id/rbFemale"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Female" />

70

02 Set-up The Development Environment for Android

</RadioGroup>

10. ToggleButton displays checked/unchecked states using a light indicator.

<ToggleButton
 android:id="@+id/toggleButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

11. Now, run your program. You will get output of the basic views as shown below.

Figure 2-60: Basic views output

71

02 Set-up The Development Environment for Android

12. Add some java code in the onCreate () method as below to handle View events
for elements, like Button and CheckBox .

Button buttonAdd = (Button) findViewById(R.id.btnAdd);
buttonAdd.setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View view){
 DisplayMessage("You have clicked the Add button");
 }
});

CheckBox checkBox = (CheckBox) findViewById(R.id.chkStudent);
checkBox.setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View view){
 if (((CheckBox) view).isChecked())
 DisplayMessage("Student check box is checked");
 else
 DisplayMessage("Student check box is unchecked");
 }
});

13. Add a common method to display the text message as below.

private void DisplayMessage(String textMessage) {
 Toast.makeText(getBaseContext(), textMessage,
 Toast.LENGTH_SHORT).show();
}

14. Run your program again. Try clicked the ADD Button and checked the Student

Checkbox . See the result of the implemented code.

72

02 Set-up The Development Environment for Android

Display Image and Menu with View

Simple ImageView

One type of View is an ImageView , which displays an image such as an icon

or a photograph. An ImageView on the screen is drawn by a Java object inside

the Android device. In fact, the Java object is the real ImageView . But when

talking about what the user sees, it ’s convenient to refer to the rectangular

area on the screen as the “ ImageView”.

Sample code:
<ImageView
 android:id="@+id/imageView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:srcCompat="@drawable/house" />

Menu

Menus are a common user interface component in many types of applications.

To provide a famil iar and consistent user experience, you should use the Menu

APIs to present user actions and other options in your activit ies.

Each menu must have an XML fi le related to it which defines its layout. These

are the tags associated with the menu option:

i . <menu> - This is the container element for menu (similar to

LinearLayout).

i i . <item> - This denotes an item and is nested inside of the menu tag.

Be aware that an item element can hold a <menu> element to

represent a submenu.

First, you need to put an image (house.jpg)

into the drawable folder under the res

folder in Android Studio.

First, you need to put an image (house.jpg)

into the drawable folder under the res

folder in Android Studio.

73

02 Set-up The Development Environment for Android

TUTORIAL: Create an Android Menu

Learning Outcomes:
By the end of this tutorial, you should be able to implement an options menu in any of your
Android SDK applications.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Create a Resources Folder

1. Create a new Android project called Android_Menu .

2. To create a menu, you need a menu folder , so create one inside the "res" folder.

 Right click on res in the project view
in Android Studio and click "New" ->
"Android Resource Directory".
Change the resource type to "menu"
in the dropdown menu and then click
"OK".

Figure 2-61: Create menu folder

3. You can see a new Android Resource Directory "menu" gets created.

 Create menu fi le in menu folder,
right click on "menu" directory ->
"New" -> "Menu resource fi le".

 Give the file name, menu_main,
then click Ok .

Figure 2-62: Create menu
resource f i le

4. Now, you can see the directory structure, that

shows the new file, menu_main.xml in
menu directory.

Figure 2-63: menu_main.xml

74

02 Set-up The Development Environment for Android

B. Create a Menu xml File

5. You can add one or more items to your options menu depending on the needs of
your own project. Add an item for each menu option using the following syntax inside
menu_main.xml .

<menu
xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/about"
 android:title="About"/>
 <item android:id="@+id/help"
 android:title="Help"/>
</menu>

C. Inflate your Menu resource

6. Add the following method to Java code, inside the class declaration and after the
onCreate() method.

public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.menu_main, menu);
 return true;
}

7. Run your program. You will get output of the android menu as shown below.

Figure 2-64: Android menu output

75

02 Set-up The Development Environment for Android

Link Activities Using Intents

Android applications can contain zero

or more activity. When your app has

more than one activity, you may need

to navigate from one activity to

another. In Android, you navigate

between activit ies through what is

known as intent . An Intent is a

messaging object you can use to

request an action from another app

component.

Figure 2-65: Intents

Below is a sample code when you click the button, the second activity wil l

open.

Button btnNext = (Button) findViewById(R.id.btnShow);

btnNext.setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View view) {
 Intent i = new Intent(getApplicationContext(),SecondActivity.class);
 startActivity(i);
 }
});

2.2
Navigating Between

Activities

Create a method that finds the Button

View with the given ID

Set event for Button

Set intent so that when user clicked

Button , it will open the second activity

76

02 Set-up The Development Environment for Android

Type of Android Intents

There are two (2) types of intents in Android:

1. Implicit Intent

 It specif ies the only action to be performed and does not directly

specify Android Components. They are used for communication

across two different applicat ions.

 The action generally specify that what is to be performed and

optionally some data is required for that action. Data is usually

expressed as a URI (Uniform Resource Identifier) that can be

represent as an image in a gallery or a person in a contacts

database for instance.

 Example: When you tap the SHARE button in any app you can see

the Gmail , Bluetooth, and other sharing app options. Here user

sends a request (implicit intent) which can be handle by these

Gmail , Bluetooth-like app.

 Sample code:

Intent i = new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse(“http://www.javatpoint.com”));
startActivity(i);

2. Explicit Intent

 It specif ies for communication inside the application. Like

changing activit ies inside the application. The component name

is generally specif ied to which the intent has to be delivered.

 Example: There are two act ivit ies (FirstActivity, SecondActivity).

When you cl ick on ‘GO TO OTHER ACTIVITY’ button in the f irst

activity, then you move to second activity. When you click on ‘GO

TO HOME ACTIVITY’ button in the second activity, then you move

to the f irst activity.

 Sample code:

Intent i = new Intent(getApplicationContext(),
 SecondActivity.class);
startActivity(i);

77

02 Set-up The Development Environment for Android

Passing Data using Intent Object

Through Intent we can move from one activity to another activity within the

same application. Intent can also be used to pass the data from one activity

to another activity.

Figure 2-66: Passing data using intents output

Sample code:

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //declare component
 Button btnNext = (Button) findViewById(R.id.btnShow);
 EditText txt_username = (EditText) findViewById(R.id.txtusername);

 //function for button Next
 btnNext.setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View view) {
 String name = txt_username.getText().toString();
 Intent i = new Intent(getApplicationContext(),
 SecondActivity.class);
 i.putExtra("name", name);
 startActivity(i);
 }
 });
 }

}

Passing data

using intent

 MainActivity

SecondActivity

Method putExtra() sends the data to

next activity by passing key-value pair

Method putExtra() sends the data to

78

02 Set-up The Development Environment for Android

public class SecondActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);

 //declare component
 Button btnBack = (Button) findViewById(R.id.buttonBack);

 Intent i = getIntent();
 String uname = i.getStringExtra("name");
 getSupportActionBar().setTitle("Hello " + uname);

 //button back to MainActivity
 btnBack.setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View view) {
 Intent i = new Intent(getApplicationContext(),
 MainActivity.class);
 startActivity(i);
 }
 });
 }
}

Read data “name” from

MainActivity in ActionBar

(SecondActivity)

79

02 Set-up The Development Environment for Android

Telephony

The Android SDK provides a number of useful util it ies to integrate phone

features available on the device with applications. The telephony system is a

software framework to provide mobile phones with telephony functionalit ies,

such as voice call , Video cal l, SMS, MMS ,data service, network management

and so on. Telephony framework for Android has four (4) layered

Architecture.

1. Communication Processor

 It is an input / output processor for transmitting and collecting data

from a number of remote terminals. It is a specialized processor

designed to communicate with a data communication network

2. Radio Interface Layer (RIL)

 This is the l ink between the hardware and services of the Android

phone frame. This is the protocol stack for Phones.

3. Android Telephony Services

 The Telephony Framework starts and is init iated along with the

system. All queries by the Application API are addressed to RIL using

this service.

4. High Level Telephony Applications

 This is the UI of a phone-related Application such as Dialer, SMS,

MMS, Call tracker, etc. The application is started with the android

system boot. This is t ied to the telephone frame service.

2.3
Utilize Telephony and

SMS Services

80

02 Set-up The Development Environment for Android

To uses telephony features, set the <uses-feature> tag with the

android.hardware.telephony feature (or one of its sub-features) in manifest

f i le. Adding telephony features to an application enables a more integrated

user experience and enhances the overall value of the application to the

users.

SMS Services

In android, we can send SMS from ou r android application in two (2) ways

either by using SMSManager API or Intents based on our requirements. If we

use SMSManager API, it wil l directly send SMS from our appl ication. In case

if we use Intent with proper action (ACTION_VIEW) , it wil l invoke a built- in

SMS app to send SMS from our application.

In android, to send SMS using SMSManager API we need to write the code l ike

as shown below.

SmsManager smgr = SmsManager.getDefault();
smgr.sendTextMessage(MobileNumber,null,Message,null,null);

SMSManager API required SEND_SMS permission in our android manifest to

send SMS. Fol lowing is the code snippet to set SEND_SMS permissions in

manifest f i le.

<uses-permission android:name = "android.permission.SEND_SMS"/>

81

02 Set-up The Development Environment for Android

TUTORIAL: Create an Android Send SMS

Learning Outcomes:
By the end of this tutorial, you should be able to implement an Android send SMS application.

Hardware/Software:
Computer, Android Studio and latest SDK version. Android_Menu .

Procedure:

A. Create an Android Send SMS

1. Create a new android application using android studio.

2. Create an activity_main.xml as shown below.

Figure 2-67: Android send SMS layout

3. Open an MainActivity.java and modify the onCreate() method like as shown
below.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //declare component
 txtPhoneNumber = (EditText) findViewById(R.id.editText_PhoneNumber);
 txtMessager = (EditText) findViewById(R.id.editText_Message);
 btnSend = (Button) findViewById(R.id.buttonSend);

 //function for button Send

82

02 Set-up The Development Environment for Android

 btnSend.setOnClickListener(new View.OnClickListener(){
 @Override
 public void onClick(View view) {
 if(Build.VERSION.SDK_INT >= Build.VERSION_CODES.M){
 if(checkSelfPermission(Manifest.permission.SEND_SMS) ==
 PackageManager.PERMISSION_GRANTED){
 sendSMS();
 }else{
 requestPermissions(new String[]{Manifest.permission.SEND_SMS},1);
 }
 }
 }
 });
}

4. Add sendSMS() method after onCreate() method like as shown below to send
SMS using SMSManager API.

private void sendSMS(){
 //get data input
 String phoneNO = txtPhoneNumber.getText().toString().trim();
 String SMS = txtMessager.getText().toString().trim();

 try{
 //use SmsManager to send SMS
 SmsManager smsMgr = SmsManager.getDefault();
 smsMgr.sendTextMessage(phoneNO, null, SMS, null, null);
 Toast.makeText(this, "Message Sent !", Toast.LENGTH_SHORT).show();
 }catch(Exception e){
 e.printStackTrace();
 Toast.makeText(this, "Message Failed To Sent !",
 Toast.LENGTH_SHORT).show();
 }
}

5. Following is the default content of AndroidManifest.xml to set SEND_SMS

permissions in manifest file.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.telephonyevent">

 <uses-permission android:name="android.permission.SEND_SMS"/>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.TelephonyEvent">
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

83

02 Set-up The Development Environment for Android

 </activity>
 </application>

</manifest>

6. Let's try to run your application.

 You can enter a desired mobile number and a text message to be sent on that
number. Finally click on Send button to send your SMS.

 Make sure your GSM/CDMA connection is working fine to deliver your SMS to
its recipient.

Figure 2-68: Android send SMS output

SMS sent successfully

SMS sent successfully

83

85

03 Data Persistence and Multimedia

Various Data Persistence and Access Mechanism

in a Mobile Application

Android provides several options for saving data persistent appl ications . The

solution chosen will depend on specif ic needs, such as whether the data

should lose their applicat ion or be accessible to other applications (and users)

and how much space data takes up. Here are data persistence approaches:

1. SharedPreferences: store primit ive private data on key -value pairs

2. FlatFiles: Save arbitrary f i les to internal or external device storage

3. SQLite Databases: store structured data in a private database

Each of these approaches provides relevant capabilit ies for different tasks in

the application. SharedPreferences are often used for a l imited set of data

that represents users’ preferences about how they want the application

configured. They can also be u sed for other data that needs to survive

throughout l ife cycle changes. FlatFiles are useful for backing up data and

sending it to other users. F inally, databases are the workforce for data

manipulation, storage, and retrieval . Developing an understanding of where,

when, and how to use this data persistence approach is important to effective

Android application development.

3.1
Construct Persistent

Data in Android

86

03 Data Persistence and Multimedia

Implement Data Persistence and Access

A. SharedPreferences

SharedPreferences used for a l imited set of data that represent user
choices about the way they want the app configured.
SharedPreferences a l lows user to store and retrieve key / values pairs
of primitive data types. User can use SharedPreferences to store
primitive data: booleans, f loats, ints, longs, and str ings.

Preferences are implemented through use of the SharedPreferences
class. A SharedPreferences object can be used to store primitive data
(e.g: integers and strings) in a key/value pair. Each value has its own
key for storage and retrieval of that data. SharedPreferences are stored
in private memory to the app and wil l persist as long as the app remains
installed on the device. App upgrades wil l not impact the values stored
with SharedPreferences .

There are two (2) main modes for accessing SharedPreferences .

1. getSharedPreferences (String name, int mode)

 Used when there is more than one set of preferences for
an app identif ied by name that will be passed in the f irst
parameter or user want the preferences available to any
Activity in the app.

getSharedPreferences("String preference name", int mode);

2. getPreferences (int mode)

 If user need a set of preferences only for a single Activity.

getPreferences(int mode);

With each of these methods, user need to set an access mode. Using 0
(zero) makes the preferences private to the app. Data is stored by using
a method appropriate to the value being saved (e.g: putBoolean or
putInt) and supplying a string that will be the key for future access to
that value. Likewise, to read SharedPreferences values use the methods
as getBoolean() and getInt() .

87

03 Data Persistence and Multimedia

Sample code: Example of persistence with SharedPrefereces

public static final String PREFS_NAME = "MyPrefsFile";
private boolean test;

private void store(){
 SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
 SharedPreferences.Editor editor = settings.edit();
 editor.putBoolean("test", test);
 // Commit editings
 editor.commit();
}
private void recover(){
 SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
 test = settings.getBoolean("test", false);
}

B. FlatFiles

Fi les are written and read as a stream of bytes. As to the Android
system, a f i le is one thing. It does not have parts, such as different
objects, within it . The advantage of f i les - data is stored efficiently and
doesn't have to worry about what data is stored within the stream.
Meanwhile, the disadvantage of f i les - depends to the developer to code
the reading & writ ing of the f i le so that the data can be used
appropriately when needed. Standard f lat f i le input/ output, useful for
backing up data and transmitting to other users.

Fi les can be written to either internal (private to the app, will persist
as long as the app is installed on the device) or external storage (such
as an SD card, accessible (including being able to modify and delete).
Files are written and read from storage using the FileInputStream and
FileOutputStream.

1. FileInputStream

 Example of simple persistence with FileInputStream :

FileInputStream fin = openFileInput("mytextfile.txt");

int c;
String temp="";
while((c = fin.read()) != -1){
 temp = temp + Character.toString((char)c);
}
fin.close();

88

03 Data Persistence and Multimedia

 The method openFileInput() is used to open a f i le and read
it. It returns an instance of FileInputStream . After that,
method read one character at a t ime from the f i le and then
print it .

2. FileOutputStream

 Example of simple persistence with FileOutputStream :

String FILENAME = "hello_file";
String string = "hello world!";

FileOutputStream fos = openFileOutput(FILENAME, Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

 The method openFileOutput() is used to create and save a
f i le, and returns an instance of Fi leOutputStream:

C. SQLite Databases

A database is very useful for any large or small system, unless system
deals only with simple data, without using a bank to store information.
The Android uses the SQLite database that is open-source and widely
used in popular appl ications.

SQLite provides capabilit ies for retrieval and manipulation of the stored
data through the use of queries written in Structured Query Language
(SQL) . Data stored in a SQLite database is private to the app and wil l
persist as long as the app is installed on the device. An app may create
and use multiple databases, and each database can have many tables,
making data storage via SQLite both extensive and flexible.

89

03 Data Persistence and Multimedia

Construct and Leverage Relational Database on

Devices Using SQLite

1. Use constants for table names and database creation query

 Define constants for database and table names

private static final String DATABASE_NAME = "my_sqlite_db";
private static final String TABLE_NAME = "student";

2. Creating a SQLite Database Instance Using the Application Context

 use the openOrCreateDatabase () method.

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;
. . .
. . .
SQLiteDatabase mDB = openOrCreateDatabase (DATABASE_NAME,
 Context.MODE_PRIVATE,null);

3. Configuring the SQLite Database Properties

 Some important database configuration options include version
and locale features.

import java.util.Locale;
. . .
mdb.setLocale(Locale.getDefault());
mdb.setVersion(1);

4. Creating Tables and Other SQLite Schema Objects

mdb.execSQL("CREATE TABLE IF NOT EXISTS " + TABLE_NAME
 + " (rollno VACHAR, name VARCHAR, marks VARCHAR);");

5. Creating, Updating and Deleting Database Records

 Insert Records – used to insert a new row in the database

mdb.execSQL("INSERT INTO " + TABLE_NAME + " VALUES ('"
 + Rollno.getText() + "', '"
 + Name.getText() + "', '"
 + Marks.getText() + "');");

90

03 Data Persistence and Multimedia

 Update Records - used to update the f ields of an existing row

mdb.execSQL("UPDATE " + TABLE_NAME
 + " SET name = '" + Name.getText()
 + "', marks = '" + Marks.getText()
 + "' WHERE rollno = '" + Rollno.getText() + "'");

 Delete Records - used to delete the existing rows

mdb.execSQL("DELETE FROM student WHERE rollno = '"
 + Rollno.getText() + "'");

6. Closing a SQLite Database

db.close();

91

03 Data Persistence and Multimedia

Sharing Data in Android Using Content Provider

The Content Providers are a very
important component that serves for
the purpose of a relational database
to store application data. The role of
the Content Provider in the android
system is l ike a central repository
where applicat ion data is stored, and
this makes it facil itates other
applicat ions to access and modify
data securely based on user needs.
The Android system allows Content
Provider to store application data in
several ways.

Figure 3-69: Content Provider

Users can manage to store the application data l ike images, audios, videos,
and personal contact information by storing it in a SQLite Database , in a f i le,
or even on a network. In oder to share the data, Content Providers have
certain permissions that are used to grant or restr ict other applicat ions’ rights
to interfere with the data.

Content URI

Content URI (Uniform Resource Identifier) is the key concept of Content
Providers. To access the data from a content provider, URI is used as a
query string. The Content URI is essentially the address of where to f ind
the data within the provider. A content URI always starts with content://
and then includes the authority of a provider which is the provider’s
symbolic name.

Structure of a Content URI consists of four (4) parts:

content://authority/path/ID

 content:// al l the content provider URIs should start with this value

 authority represents the domain, and for content providers
customarily ends in .provider

 path is the path to the data

 ID uniquely identif ies the data set to search

92

03 Data Persistence and Multimedia

Operations in Content Provider

Each android application can be a Content Provider . When Content
Provider is accessed, the ContentResolver object will be used in the
applicat ion context. The ContentResolver communicates with the
provider, an instance of the class that implements Content Provider . The
ContentResolver object receives data request from the client and
perform the request action on behalf of the client and deliver the results
back to the client.

This ContentResolver object has methods - insert() , update() , query()
and delete() that cal l identically-named methods in the provider object,
an instance of one of the concrete subclasses of Content Provider. The
methods provide the basic "CRUD" (namely Create , Read , Update , and

Delete) functions of persistent storage.

1. Create: Operation to create data in a content provider
2. Read : Used to fetch data from a content provider
3. Update: To modify existing data
4. Delete: To remove existing data from the storage

Example: Android Content Provider, Content URI and ContentResolver

Android Content Provider is mainly
used for data sharing between
different applications. It provides a
complete set of mechanisms to al low
one program to access data in
another program, and also to ensure
the security of the data being
accessed. Content URI is a unique
resource identif ier that Content
Provider app provides for client app
to access it ’s shared data.

To get data from a Content Provider ,
a ContentResolver needs to be used
in the applicat ion. Then the
ContentResolver ‘s method can be
used to insert, delete, update and
query data shared by other content

providers. This is something l ike
SQLite database operation.

Figure 3-70: Android content provider

93

03 Data Persistence and Multimedia

Graphics and animations help make Android apps interesting and fun to use;
however, it is important to remember that some interactions occur through
screen readers, alternative input devices, or with assisted zoom. Also, some
interactions may occur without audio capabilit ies.

Applicat ions are more useful in these situations if they are designed with
accessibil ity in mind: providing hints and navigational assistance in the user
interface, and ensuring there is text or description content for the UI pictorial
elements.

Multiple Screens Density and Size

For applications, the Android system provides a consistent development
environment across devices and handles most of the work to adjust each
applicat ion's user interface to the screen on which it is displayed. At the same
time, the system provides APIs that can control appl ication's UI for specif ic
screen sizes and densities.

A. Terms and Concepts

1. Screen Size
Actual physical size, measured as the screen's diagonal. For
simplicity, Android groups all actual screen sizes into four
generalized sizes: small , normal , large , and extra-large .

2. Screen Density

The quantity of pixels within a physical area of the screen; usually
referred to as dpi (dots per inch). For example, a "low" density
screen has fewer pixels within a given physical area, compared to
a "normal" or "high" density screen.

3.2
Apply Graphics and
Animation Android

94

03 Data Persistence and Multimedia

For simplicity, Android groups al l actual screen densities into six
generalized densities: low , medium , high , extra-high , extra-
extra-high , and extra-extra-extra-high .

3. Orientation

The orientation of the screen from the user's point of view. This
is either landscape or portrait , meaning that the screen's aspect
ratio is either wide or tall , respectively. Be aware that not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

4. Resolution

The total number of physical pixels on a screen. When adding
support for multiple screens, applications do not work directly
with resolution; applications should be concerned only with
screen size and density, as specif ied by the general ized size and
density groups.

5. Density-independent pixel (dp)

A virtual pixel unit that user should use when defining UI layout,
to express layout dimensions or position in a density -
independent way. The density -independent pixel is equivalent to
one physical pixel on a 160 dpi screen, which is the baseline
density assumed by the system for a "medium" density screen. At
runtime, the system transparently handles any scaling of the dp
units, as necessary, based on the actual density of the screen in
use. The conversion of dp units to screen pixels is s imple: px= dp*
(dpi / 160).

For example, on a 240 dpi screen, 1 dp equals 1.5 physical pixels.
You should always use dp units when def ining your application's
UI, to ensure proper display of your UI on screens with diff erent
densities.

95

03 Data Persistence and Multimedia

B. Range of Screens Supported

Starting with Android 1.6 (API Level 4), Android provides support for
multiple screen sizes and densities, reflecting the many different screen
configurat ions that a device may have. To make it easier to design a
user interface for multiple screens, Android divides the actual screen
size and density range into:

1. A set of four (4) generalized sizes:

small , normal , large , and xlarge

2. A set of six (6) generalized densities:

ldpi (low) ~120dpi , mdpi (medium) ~160dpi , hdpi high) ~240dpi ,
xhdpi (extra-high) ~320dpi , xxhdpi (extra-extra-high) ~480dpi

and xxxhdpi (extra-extra-extra-high) ~640dpi

C. How to Support Multiple Screen

1. Explicit ly declare in the manifest which screen sizes your application
supports.

2. Provide different layouts for different screen sizes.
3. Provide different bitmap drawablesfor different screen densities

D. The Best Practice to Ensure Compatibil ity Screen Display

1. Use wrap_content , fi l l_parent or dp units when specifying
dimensions in an XML layout f i le

2. Do not use hard coded pixel values in your applicat ion code
3. Do not use AbsoluteLayout (it 's deprecated)
4. Supply alternative bitmap drawables for different screen densities

96

03 Data Persistence and Multimedia

Animation Types and Capabilities

Animation is the process of creat ing motion and changing shape of a specif ic
view. Animation in android can be done in various ways. Animation in Android
is generally used to give the UI a r ich look and feel.

Animation basically consists of three (3) types as follows::

A. Property Animation

Introduced in Android 3.0 (API level 11), an extensible and flexible

system that can be used to animate the properties of any object, not

just View objects. This f lexibil ity allows animations to be encapsulated

in distinct classes that will make code sharing easier . Property

Animation can be used to add any animation in the CheckBox,

RadioButtons, and widgets other than any view.

The android.animation provides classes which handle property

animation. The Property Animation system lets user define the

following characteristics of an animation:

 Duration : User can specify the duration of an animation. The
default length is 300 ms.

 Time interpolation : User can specify how property values are
calculated as a funct ion of the elapsed animation time.

 Repeat count and behavior : User can specify whether or not to
have an animation repeat when reaching the end of the period
and how many times to repeat the animation. User can also
specify whether user want the animation to play back in reverse.
Setting it to reverse plays the animation forwards then backwards
repeatedly, unti l the number of repeats is reached.

 Animator sets : User can group animations into logical sets that
play together or sequentially or after specif ied de lays.

 Frame refresh delay : User can specify how often to refresh
frames of animation. The default is set to refresh every 10 ms,
but the speed in which application can refresh frames is
ult imately dependent on how busy the system is overal l and how
fast the system can service the underlying timer.

97

03 Data Persistence and Multimedia

B. View Animation

View Animation is an original animation API's in Android, also called as

Tween Animation and available in all versions of Android. This API is

l imited in that it wil l only work with View objects and can only perform

simple transformations on those Views. View animations are typical ly

defined in XML fi les found in the /Resources/anim folder. The

android.view.animation provides classes which handle view animation.

An example of View Animation can be used, such as : if we have a

TextView object, we can move, rotate, grow, or shrink the text. If it has

a background image, the background image wil l be transformed along

with the text.

C. Drawable Animation

Drawable Animation is the simplest animation API, used if user want to

animate one image over another. The simple way to understand is to

animate drawable is to load a series of drawable one after another to

create an animation. A simple example of Drawable Animation can be

seen in many apps Splash screen on apps logo animation.

The important methods of Animation

 startAnimation() - This method will start the animation

 clearAnimation() - This method wil l clear the animation running on a
specif ic view

98

03 Data Persistence and Multimedia

TUTORIAL: Graphics and Animation Capabilities to an Application

Learning Outcomes:
By the end of this tutorial, you should be able to add animations to ImageView.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Create New Project

1. Open Android Studio and create new project. Name it as Android_Animation .

Click Finish .

B. Working with the activity_main.xml

2. Create ImageView along with Buttons that will add animation to the view as
shown below.

Figure 3-71: Animation interface

99

03 Data Persistence and Multimedia

C. Create 6 different types of animation for ImageView

3. To create new animations, create a new directory for storing all animations.
Navigate to the app > res > . Right-click on res >> New >> Directory >>
Name directory as “anim”.

4. Inside this directory, create animations. For creating a new anim right click on the
anim directory >> Animation Resource f i le and give the name to file.

5. Below is the code snippet for six (6) different animations.

blink.xml
<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">

 <alpha android:fromAlpha="0.0"
 android:toAlpha="1.0"
 android:interpolator="@android:anim/accelerate_interpolator"
 android:duration="500"
 android:repeatMode="reverse"
 android:repeatCount="infinite"/>

</set>

rotate.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">

 <rotate
 android:duration="6000"
 android:fromDegrees="0"
 android:pivotX="50%"
 android:pivotY="50%"
 android:toDegrees="360" />

 <rotate
 android:duration="6000"
 android:fromDegrees="360"
 android:pivotX="50%"
 android:pivotY="50%"
 android:startOffset="5000"
 android:toDegrees="0" />

</set>

fade.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/accelerate_interpolator" >

 <alpha

100

03 Data Persistence and Multimedia

 android:duration="1000"
 android:fromAlpha="0"
 android:toAlpha="1" />

 <alpha
 android:duration="1000"
 android:fromAlpha="1"
 android:startOffset="2000"
 android:toAlpha="0" />

</set>

move.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:interpolator="@android:anim/linear_interpolator"
 android:fillAfter="true" >

 <translate
 android:fromXDelta="0%p"
 android:toXDelta="75%p"
 android:duration="700" />

</set>

slide.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:fillAfter="true" >

 <scale
 android:duration="500"
 android:fromXScale="1.0"
 android:fromYScale="1.0"
 android:interpolator="@android:anim/linear_interpolator"
 android:toXScale="1.0"
 android:toYScale="0.0" />

</set>

zoom.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
 android:fillAfter="true" >

<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:fromXScale="0.5"
 android:toXScale="3.0"
 android:fromYScale="0.5"
 android:toYScale="3.0"
 android:duration="5000"
 android:pivotX="50%"
 android:pivotY="50%" >
</scale>

101

03 Data Persistence and Multimedia

<scale xmlns:android="http://schemas.android.com/apk/res/android"
 android:startOffset="5000"
 android:fromXScale="3.0"
 android:toXScale="0.5"
 android:fromYScale="3.0"
 android:toYScale="0.5"
 android:duration="5000"
 android:pivotX="50%"
 android:pivotY="50%" >
</scale>

</set>

D. Working with the MainActivity.java file

6. Add animation to the ImageView by clicking a specific Button .

public class MainActivity extends AppCompatActivity {

 ImageView imageView;
 Button blinkBTN, rotateBTN, fadeBTN, moveBTN, slideBTN, zoomBTN;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 imageView = findViewById(R.id.imgView);
 blinkBTN = findViewById(R.id.btnBlink);
 rotateBTN = findViewById(R.id.btnRotate);
 fadeBTN = findViewById(R.id.btnFade);
 moveBTN = findViewById(R.id.btnMove);
 slideBTN = findViewById(R.id.btnSlide);
 zoomBTN = findViewById(R.id.btnZoom);

 blinkBTN.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // To add blink animation
 Animation animation =
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.blink);
 imageView.startAnimation(animation);
 }
 });

 rotateBTN.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // To add rotate animation
 Animation animation =
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.rotate);

102

03 Data Persistence and Multimedia

 imageView.startAnimation(animation);
 }
 });

 fadeBTN.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // To add fade animation
 Animation animation =
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.fade);
 imageView.startAnimation(animation);
 }
 });

 moveBTN.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // To add move animation
 Animation animation =
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.move);
 imageView.startAnimation(animation);
 }
 });

 slideBTN.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // To add slide animation
 Animation animation =
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.slide);
 imageView.startAnimation(animation);
 }
 });

 zoomBTN.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // To add zoom animation
 Animation animation =
 AnimationUtils.loadAnimation(getApplicationContext(),
 R.anim.zoom);
 imageView.startAnimation(animation);
 }
 });

 }
}

E. Output

7. Now, run your program. You will see animation output on the emulator or device.

103

03 Data Persistence and Multimedia

Many modern “smart devices” have built - in cameras to capture and display
sti l l images, video, and sophisticated music playback abil it ies. Basic
smartphone has at least one camera, sometimes two for the front -facing
cameras used for video chat and self-portraits (self ies).

As an application developer, we are free to make use of any media codec that
is available on any Android -powered device, including those provided by the
Android platform and those that are device -specif ic. However, it is a be st
practice to use media encoding prof iles that are device -agnostic.

A. Audio Capture

The Android multimedia framework includes support for capturing and
encoding a variety of common audio formats, so that we can easi ly
integrate audio into applications. W e can record audio using the
MediaRecorder APIs if supported by the device hardware.

B. Camera

The Android framework supports capturing images and video through
the android.hardware.camera2 API or camera Intent .

3.3
Apply Multimedia

Component

104

03 Data Persistence and Multimedia

Media Container and Codecs

The table below describes the media format support built into the Android
platform. Note that any given mobile device may provide support for
additional formats or f i le types not l isted in the table.

Type Format / Codec
Supported File Type(s) / Container

Formats

Audio

AAC LC • 3GPP (.3gp)
• MPEG-4 (.mp4, .m4a)
• ADTS raw AAC (.aac, decode in
Android 3.1+, encode in Android
4.0+, ADIF not supported)
• MPEG-TS (.ts, not seekable,
Android 3.0+)

HE-AACv1 (AAC+)

HE-AACv2 (enhanced
AAC+)

AAC ELD (enhanced low
delay AAC)

AMR-NB 3GPP (.3gp)

AMR-WB 3GPP (.3gp)

FLAC FLAC (.f lac) only

MP3 MP3 (.mp3)

MIDI

• Type 0 and 1 (.mid, .xmf, .mxmf)
• RTTTL/RTX (.rtttl, .rtx)
• OTA (.ota)
• iMelody (. imy)

Vorbis
• Ogg (.ogg)
• Matroska (.mkv, Android 4.0+)

PCM/WAVE WAVE (.wav)

Image

JPEG JPEG (.jpg)

GIF GIF (.gif)

PNG PNG (.png)

BMP BMP (.bmp)

WebP WebP (.webp)

Video

H.263
• 3GPP (.3gp)
• MPEG-4 (.mp4)

H.264 AVC

• 3GPP (.3gp)
• MPEG-4 (.mp4)
• MPEG-TS (.ts, AAC audio only, not
seekable, Android 3.0+)

MPEG-4 SP 3GPP (.3gp)

VP8
• WebM (.webm)
• Matroska (.mkv, Android 4.0+)

Table 3-8: Media container and codecs

105

03 Data Persistence and Multimedia

TUTORIAL: Implement Media

Learning Outcomes:
By the end of this tutorial, you should be able to implement VideoView.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Create New Project

1. Open Android Studio and create new project. Name it as Android_Media . Click

Finish .

B. Working with the activity_main.xml

2. Create VideoView along with Button that will play video to the view as shown
below.

Figure 3-72: Media interface

C. Create raw folder

3. To create new media, create a new directory for storing media. Navigate to
the app > res > . Right-click on res >> New >> Folder >> Res Folder >>
Configure Component.

4. Tick checkbox “Change Folder
Location”. Name New Folder
Location as “src/main/res/raw”.
Drag mp4 video into raw folder.

Figure 3-73: Create raw folder

106

03 Data Persistence and Multimedia

D. Working with the MainActivity.java file

5. Add animation to the videoview by clicking a specific Button .

package com.example.android_media;

import androidx.appcompat.app.AppCompatActivity;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.MediaController;
import android.widget.VideoView;

public class MainActivity extends AppCompatActivity {

 VideoView videoview;
 Button btnPLAY;
 MediaController mediac;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // initiate components
 btnPLAY = (Button) findViewById(R.id.btnPlay);
 videoview = (VideoView) findViewById(R.id.videoView);
 mediac = new MediaController(this);
 }

 public void videoplay(View view){
 String VideoURL = "android.resource://com.example.android_media/"
 + R.raw.tech;
 Uri uri = Uri.parse(VideoURL);
 videoview.setVideoURI(uri);
 videoview.setMediaController(mediac);
 mediac.setAnchorView(videoview);
 videoview.start();
 }
}

E. Output

6. Now, run your program. You will see media output
on the emulator or device.

Figure 3-74: Media output

111

108

04 Publishing Android Application

Fundamentals of Testing

Users interact with developed mobile app on a variety of levels, from pressing

a button to downloading information to their devices. Therefore, as a mobile

developer should test a variety of use cases and interactions as iteratively

developing app.

As mobile app expands, there are a number of activity features that need to

be considered such as fetching data from a server, interacting with the

device's sensors, accessing local storage, or rendering complex user

interfaces. The versatil ity of mobile app demands a comprehensive testing

strategy.

View app as a series of modules

To make code easier to test, develop code in terms of modules, where

each module represents a specif ic task that us ers complete within app.

This perspective differs the stack -based view of an mobile app that

typically contains layers representing the UI, business logic, and data.

It 's important to set well -def ined boundaries around each module, and

to create new modules as app grows in scale and complexity. Each

module should have only one area of focus, and the APIs that allow

communication between modules must be consistent. To make it easier

and faster to test the interactions between these modules, consider

creating a fake module implementation. In testing, the real

implementation of one module can call the fake implementation of the

other module.

4.1
Test Android

Application Components

109

04 Publishing Android Application

However, create a new module, don't be too dogmatic to make it

complete r ight away. It doesn't matter i f a particular mo dule doesn't

have one or more application stack layers.

Running test on different types of devices

When running a test on a device, you can choose between the following

types:

1. Real device

Real devices offer the highest f idelity but also require the most

t ime to run tests.

2. Virtual device (such as the emulator in Android Studio)

Virtual devices offer a balance of f idel ity and speed. When using

a virtual devices for testing, use snapshots to minimize setup time

in between tests.

3. Simulated device (such as Roboletric)

Simulated devices, on the other hand, provide better test speeds

with lower f idel ity costs. However, platform improvements in

binary sources and realistic compilers allow simulation devices to

produce more realistic results.

Write tests

Once the test environment is configured, it is t ime to write a test that

evaluates the functionality of the mobile application. This sect ion

describes how to write small , medium and large tests.

1. Small Test

Small tests are unit tests that validate mobile app's b ehavior one

class at a t ime.

2. Medium Test

Medium tests are integration tests that validate either

interactions between levels of the stack within a module, or

interactions between related modules.

3. Large Tests

Large tests are end-to-end tests that validate journeys spanning

multiple modules of mobile app.

110

04 Publishing Android Application

While working on the pyramid, from small tests to large tests, each test

increases in f idelity but also increases in execution time and effort to

maintain and debug. Therefore, should write more unit test s than

integration tests, and more integration tests than end -to-end tests.

Although the test portion for each category can vary based on the

applicat ion use case, it general ly recommends the fol lowing division

between categories: 70 percent small, 20 perc ent medium, and 10

percent large.

Figure 4-75: The Test ing Pyramid, showing the three categories of tests that

should include in mobile app's test suite

The small test written must be a highly focused unit test that

thoroughly validates the functionality and contracts of each class within

mobile app. In addition to testing each mobile appl icat ion unit by

running small tests, it must validate app's behavior from the modu le

level. To do so, write a medium test , which is an integration test that

validates the col laboration and interaction of a group of units.

While it is important to test each class and module in a mobile

applicat ion separately, it is equally important to validate an end-to-end

workflow that guides users through multiple modules and features. This

type of testing form unavoidable diff icult ies in code, but can minimize

this effect by validating an app that's as close to the actual, f inished

product as possib le.

 Fidelity

 Execution time

 Maintenance

 Debugging

UI Tests

(Large Test)

Integration Tests

(Medium Tests)

Unit Tests

(Small Tests)

of test

111

04 Publishing Android Application

If the mobile app is small enough, it may only require only one suite of

large tests to evaluate the app’s functionality as a whole. Otherwise,

should divide the large test suite by team ownership, functional

vertical, or user goals. Typically, it is better to test an app on an

emulated device or a cloud-based service l ike Firebase Test Lab, rather

than on a physical device, as it can test multiple combinations of screen

sizes and hardware configurations more easily and quickly.

Android JUnit Framework for Unit Testing

Install the dependencies

To use JUnit tests for Android application, add a dependency to Gradle

build f i le.

dependencies {

 // Unit testing dependencies
 testImplementation 'junit:junit:4.+'

}

JUnit is a Unit Testing Framework for Java Applications. It is an

automation framework for Unit as well as UI Testing. It contains

annotations such as @Test, @Before, @After etc. Unit tests are

generally written before writ ing the actual application.

Unit Test ing is done to ensure that developer would be unable to write

low quality / incorrect code. It makes sense to write a Unit Test before

writing the actual app as there wil l be no bias towards test success,

write the test f irst and the actual code should adh ere to the design

guidelines laid out by the test.

JUnit methods

There are several methods provided by JUnit Framework .

1. assertThat () : create custom assertions and not just true and false
values. It takes in 3 arguments. A reason/description, input value to
be checked, expected actual value.

112

04 Publishing Android Application

2. is () : returns a Matcher to match the source object to the one
provided as the parameter of method is() .

3. equalTo () : checks for equality between the expected and actual
value.

4. when () : a very powerful method which takes in a method call as its
parameter. It takes in the method call which is to be
stubbed/duplicated. Once the method stub is executed, method
then() is cal led.

5. thenReturn () : called after the method stub provided in whe n()
method has f inished running. It is used to return the result of the
method, if it is not void.

Android Unit Test Tutorial

1. Whenever an android project is developed, there are three java

packages visible.

Figure 4-76: Java pakages

There is a main package (the first one), and inside this package there is all application’s

code. Next, there are two more packages that can be differentiate these packages

with shown hint androidTest and test .

2. Now go to app-level build.gradle f i le and see the dependencies block.

113

04 Publishing Android Application

dependencies {

 implementation 'androidx.appcompat:appcompat:1.3.1'
 implementation 'com.google.android.material:material:1.4.0'
 implementation 'androidx.constraintlayout:constraintlayout:2.1.0'

 // Unit testing dependencies
 testImplementation 'junit:junit:4.+'
 androidTestImplementation 'androidx.test.ext:junit:1.1.3'
 androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'

}

Figure 4-77: build.gradle

You can see there are testImplementation and

androidTestImplementation. testImplementation is a l ibrary avai lable

inside test package. And the same way if you want the l ibrary to be

avai lable inside android Test package, you need to use

androidTestImplementation . Now, JUnit Testing Framework is added

by default here. Each time a project is developed, it wil l be added by

default. JUnit wil l be used for unit test code.

114

04 Publishing Android Application

Prepare an application for publishing

Publishing is the general process that makes Android applications available to
users. Various distribution opportunities are available for Android app
developers. Many developers choose to sell their apps through mobile
marketplaces such as Google Play. Ot hers develop their own distribution
mechanisms, for example, they may sell their apps from websites.

Figure 4-78: Publishing application

There are two (2) main tasks of publishing an Android application:

1. Prepare the application for release

During the preparation step, build a release version of application,
which users can download and install on their Android -powered
devices.

2. Release the application to users

During the release step, publicize, sell, and distribute the release
version of application to users.

4.2
Publish Application

115

04 Publishing Android Application

Preparing an application for publish is a multi -step process that involves the
following tasks :

1. Configure the application to be released
Remove call Logs and android:debuggable attributes from the
manifest f i le. Provide values for the android attributes:versionCode
and android:versionName , located in the <manifest> e lement.
Configure some other settings to meet Google Play requirements or
accommodate whatever method is used to release the app. Can also
use the release bui ld type to set build settings for the published
version of the application.

2. Building and signing a release version of application

Use the Gradle build f i le with the release build type to build and sign
the release version of the application.

3. Testing the release version of application

Before distr ibuting the app, test the release version thoroughly on
at least one target mobile device and one target tablet device.

4. Updating application resources for release

Ensure that al l application resources such as mult imedia and
graphics f i les are updated and included with the application or
staged on the correct production server.

5. Preparing remote servers and services that application depends on

If the application depends on an external server or service, make
sure it is secure and ready for production.

116

04 Publishing Android Application

Configure the application version and API
requirements

During the publishing preparation steps, developer build a release version of
the app, which users can download and install on their Android -powered
devices. Versions are an important component of applicat ion improvement
and maintenance strategies. Version is important because:

1. Users need to have specif ic information about the version of the
applicat ion installed on their device and the upgraded version avai lable
for installation.

2. Other apps - including other applications that published together as a
suite, need to query the system for app's version, to determine
compatibi l ity and identify dependencies.

3. The service that will be used to publish the application may also need
to request the type of application for that version, so that they can
display that version to the user. Publishing services may also need to
check application versions to determine compatibi l ity and establish an
upgrade / drop relationship.

The Android system uses app version information to protect against
downgrades. The Android system enforces system version compatibil ity as
specif ied by the minSdkVersion setting in the build f i le. This setting allows
the application to specify the appropriate minimum system API.

117

04 Publishing Android Application

Set application version information

To define the version information for app, set values for the version

settings in the Gradle build f i les. These values are then merged into

app's manifest f i le during the bui ld process. Two settings are avai lable,

and you should always define values for bo th of them: versionCode and

versionName .

Define default values for these settings by including them in the

defaultConfig{} block, nested inside the android{} block of module's

build.gradle f i le. Override these default values for different versions of

app by defining separate values for individual build types or product

f lavors.

Set API level requirements

If app requires a specif ic minimum version of the Android platform,

specify that version requirement as API level settings in the app's

build.gradle f i le. During the build process, these settings are merged

into app's manifest f i le. Specifying API level requirements ensures that

app can only be installed on devices that are running a compatible

version of the Android platform.

118

04 Publishing Android Application

Package, sign and optimize the application

Android requires that all APKs be digitally signed with a certif icate before they

are installed on a device or updated . Following is the steps need to sign and

publish a new app to Google Play:

1. Generate an upload key and keystore

You can generate one using Android Studio as follows:

Figure 4-79: Create a new upload key and keystore in Android Studio

 In the menu bar, cl ick Build > Generate Signed Bundle/APK.

 In the Generate Signed Bundle or APK dialog, select Android App

Bundle or APK and cl ick Next.

 Below the f ield for Key store path , cl ick Create new.

https://developer.android.com/studio/publish/app-signing

119

04 Publishing Android Application

 On the New Key Store window, provide the information for

keystore and key.

Key store

Key store path: Select the location where keystore should be

created.

Password: Create and confirm a secure password for keystore.

 Key

Alias: Enter an identifying name for key.

Password: Create and confirm a secure password for key. This

should be different from the password chose for keystore.

Validity (years) : Set the length of t ime in years that key will

be valid. The key should be valid for at least 25 years, so you

can sign app updates with the same key through the l ifespan

of app.

Certificate: Enter some information about yourself for

certif icate. This information is not displayed in app, but is

included in your cert if icate as part of the APK.

 Once complete the form, click OK.

2. Sign app with upload key

To sign app using Android Studio, and export an existing app signing

key, follow these steps:

 Click Build > Generate

Signed Bundle/APK.

 In the Generate Signed

Bundle or APK dialog,

select either Android

App Bundle or APK and

click Next.

Figure 4-80: Generate signed bundle

120

04 Publishing Android Application

 Select a module from the drop down.

 Specify the path to keystore, the alias for key, and enter the

passwords for both. Click Next.

 Select a destination folder for signed app, select the build type

(free/paid), choose the product f lavor(s) if applicable. Click

Finish.

3. Opt in to Play App Signing

To configure signing for an app that has not yet been published to

Google Play, proceed as follows:

 Sign in to your Play Console.

 Follow the steps to prepare & roll out release to create a new

release.

 After you choose a release track, configure app signing under the

App Integrity section. The key use to sign f irst release becomes

upload key, and should use it to sign future releases.

Figure 4-81: Signing an app with Play App Signing

4. Upload your app to Google Play

After build and sign the release version of app, the next step is to

upload it to Google Play to inspect, test, and publish app. Google Play

supports compressed app downloads of only 150 MB or less.

Figure 4-82: Publish an app on Play Store

121

04 Publishing Android Application

5. Prepare & roll out release of your app

Android apps can be released in several ways. Usually, apps are released

through an application marketplace such as Google Play, but can also

release apps on their own websites or by sending apps directly to users.

Figure 4-83: Release app

App Stores
(Android / IOS apps)

Release on
own websites

Sending apps
directly to users

1

1

2 3

https://support.google.com/googleplay/android-developer/answer/9859348?visit_id=637453307112360025-1360415735&rd=1

122

04 Publishing Android Application

Distribute the application on online Application
Stores

App distribution is the process of releasing an app to a broad set of users in
order to promote app engagement and usage. Often, app marketers will seek
out app distribution channels and platforms as a way to advertise their app -
either organically or paid.

Figure 4-84: Distribute app

1. Pre-Launch

Test app potential with an early release. Introduce a few core features
of the app and use popular channels with strong communit ies, to gain
interest and attract people. This helps growing user base and get the
attention of investors. With an ea rly release, fascinate a few early
adopters before start with creating the brand -new framework.

2. Optimize App

Optimize app for app stores just l ike optimize a website for a search
engine. Find the relevant keywords with the help of effective SEO tools
and make sure add those keywords to the app tit le and description.

3. Find the Niche

To help app stand out, differentiate it with the other apps available in
the market. There are two ways of doing this – release such features
that no other app in the app store has or f ind own niche.

Android App Stores IOS App Stores

123

04 Publishing Android Application

4. Craft App Presence on App Store
‘The First Impression is the Last Impression’ . When users f ind app in
their searches and stumble upon it, get a few seconds to impress them.
Make sure app’s home page is loaded with well -crafted screenshots and
has engaging content. It should highlight the effective features and
other factors of app that can help users understand app better. If app
is paid, offer users a basic version with a free download and l imited
features.

5. Be Exclusive
Make sure uniquely promote app. Use the app marketing strategies that
help develop people’s interest and attract them to download app. There
are various effective ways to promote an app for free.

6. Leverage Social Presence

Social Media is one of the most pow erful marketing tools avai lable
online. Leverage social media presence to the optimum level. Provide
users with the social media integrations in the app so that they could
share their experiences and achievements among their social circle.
Offer reward points or coupon discounts for every referral share.

7. Develop User Interest

Release app for a few users f irst and have rest use the app through
referrals and invites. This makes users curious about app and helps get
the target audience by word of mouth marketing. Also, good reviews
from these users can help rank higher in App Store optimization.

124

References

1. Iversen, J., & Eierman, M. (2014). Learning Mobile App Development: A Hands-On

Guide to Building Apps with Ios and Android. Pearson Education.

2. Smyth, N. (2015). Android Studio Development Essentials: Android 6 Edition.

eBookFrenzy.

3. https://developer.android.com/guide/platform

4. https://www.javatpoint.com/android-life-cycle-of-activity

5. https://www.tutorialspoint.com/android/android_overview.htm

6. https://www.tutlane.com/tutorial/android/android-framelayout-with-examples

7. https://www.geeksforgeeks.org/screen-orientations-in-android-with-examples/

8. https://www.c-sharpcorner.com/article/designing-user-interface-with-views-in-

android-application/

https://developer.android.com/guide/platform
https://www.javatpoint.com/android-life-cycle-of-activity
https://www.tutorialspoint.com/android/android_overview.htm
https://www.tutlane.com/tutorial/android/android-framelayout-with-examples
https://www.geeksforgeeks.org/screen-orientations-in-android-with-examples/
https://www.c-sharpcorner.com/article/designing-user-interface-with-views-in-android-application/
https://www.c-sharpcorner.com/article/designing-user-interface-with-views-in-android-application/

125

