POLIT &Ml
MALAYSIA
SULTAN MIZAN ZAINAL ABIDIN

THE NEXT BIG APP IDEA

ICATION
ELOPMENT

by
Melati Sabtu

Syaiful Bachtiar Shahinan

Department of Information Technology & Communication
Polytechnic of Sultan Mizan Zainal Abidin
Dungun, Terengganu

This page intentionally left blank.

THE NEXT BIG APP IDEA

OBILE
PPLICATION
EVELOPMENT

FOR MALAYSIAN POLYTECHNIC STUDENTS

M
A
D

by
Melati Sabtu
Syaiful Bachtiar Shahinan

Department of Information Technology & Communication
Polytechnic of Sultan Mizan Zainal Abidin
Dungun, Terengganu

Copyright © 2021
www.psmza.edu.my

Melati Sabtu | Syaiful Bachtiar Shahinan

Department of Information Technology & Communication
Polytechnic of Sultan Mizan Zainal Abidin

Dungun, Terengganu

Melati Sabtu | Syaiful Bachtiar Shahinan

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means,
electronic, photocopying, recording or otherwise, without the prior
written permission of the Polytechnic of Sultan Mizan Zainal Abidin and
Department of Polytechnic Education and Community Colleges, Ministry
of Higher Education Malaysia.

Published by:
Polytechnic of Sultan Mizan Zainal Abidin
Km 08, Jalan Paka, 23000 Dungun, Terengganu

elSBN 978-967-2099-69-7

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Melati Sabtu, 1982-
The Next Big App Idea : Mobile Application Development For Malaysian
Polytechnic Students / by Melati Sabtu, Syaiful Bachtiar Shahinan.
Mode of access: Internet
elSBN 978-967-2099-69-7
1. Android (Electronic resource).
2. Application software--Development.
3. Government publications--Malaysia.
4. Electronic books.
I. Syaiful Bachtiar Shahinan, 1980-. II. Title.
005.25

ACKNOWLEDGEMENT

I

I

Design Thinking:
Practical Applications

Developing applications can be a core skill in the
field of information technology. Nowadays,
businesses are increasingly looking for mobile apps
to enhance their relationships with customers and
improve their internal processes. They need
individuals skilled in developing mobile
applications that support this initiative.

Therefore, this book is intended to be an
introduction to mobile application development.
Users will have the basic skills to develop Android
applications from app creation through app
publishing. Step by step is shown so that users can
more easily understand and can do it themselves.

This book is the full property of Polytechnic of
Sultan Mizan Zainal Abidin which is used on the
online learning platform PSMZA.

Any questions can contact us at the email address:
 melatisabtuegmail.com
* naimrichdesignegmail.com

01
Getting Started with Android

02
Develop The Android Application

03
Data Persistence and Multimedia

04
Publishing Android Application

GETTING
- STARTED
WITH
_ ANDROID

Explain what is Android ?

Set-up the development
environment for Android

Develop first Android Application

01 Getting Started with Android

1.1

Explain what is
Android ?

Android is an open source operating system based on the Linux kernel,
middleware and key applications for mobile devices. It is designed primarily
for touch screen mobile devices such as smartphones and tablet computers.
Android was developed by the Open Handset Alliance, led by Google.

Android offers an integrated approach to app development for mobile
devices which means developers only need to develop for Android, and the
app should be able to run on different devices powered by Android. The
Android SDK provides the tools and APIs necessary to begin developing
applications on the Android platform using the Java programming language.

The first beta version of the
Android Software Development Kit
(SDK) was released by Google in
2007 where as the first commercial
version, Android 1.0, was released
in September 2008. On June 27,
2012, at the Google I/O conference,
Google announced the next
Android version, 4.1 Jelly Bean.
Jelly Bean is an additional update,
with the primary goal of improving
the user interface, both in terms of
functionality and performance.

Source code for Android s
available wunder free and open
source software licenses. Google
publishes most of the code under
Apache License version 2.0 and the
rest, the Linux kernel changed,
under GNU General Public License
version 2.

01 Getting Started with Android

History of Android

Android, Inc. was founded in Palo Alto, California, in October 2003 by Andy
Rubin (founder of Danger), Rich Miner (founder of Wildfire Communications,
Inc.), Nick Sears (former VP of T-Mobile), and Chris White (Head of Design
and Development between WebTV interface) to develop “smart mobile
devices that are more aware of their location and preferences”.

The initial goal of Android development was to develop an operating system
aimed at sophisticated digital cameras, but then they realized that the market
for the device was not large enough, and then turned to the development of
the Android smartphone market to compete with Symbian and Windows
Mobile.

%@ >

G)

\./

Nick Sears Chris White

Figure 1-1: Founders and Developers of
Android Operating System

01 Getting Started with Android

Android Versions

The development of the Android operating system was started in 2003 by
Android, Inc. Later, it was purchased by Google in 2005. The version history
of the Android operating system began with the launch of Android 1.0 beta in
November 2007.

Since April 2009, each version of Android has been developed with a code
name based on a dessert item. The first Android version which was released
under the numerical order format was Android 10. APl level is an integer value
that uniquely identifies the API revision framework offered by the Android
platform version.

Android Versions, Name and API Level

Code name Version numbers API level Release date
No codename 1.0 1 September 23, 2008
No codename 1.1 2 February 9, 2009
Cupcake 1.5 3 April 27, 2009
Donut 1.6 4 September 15, 2009
Eclair 2.0-21 5-7 October 26, 2009
Froyo 22-2.23 8 May 20, 2010
Gingerbread 23-23.7 9-10 December 6, 2010
Honeycomb 3.0-3.2.6 11-13 February 22, 2011
Ice Cream Sandwich 4.0-4.04 14 - 15 October 18, 2011
Jelly Bean 41-43.1 16-18 July 9, 2012
KitKat 4.4-44.4 19-20 October 31, 2013
Lollipop 5.0-5.1.1 21- 22 November 12, 2014
Marshmallow 6.0-6.0.1 23 October 5, 2015
Nougat 7.0 24 August 22, 2016
Nougat 7.1.0-7.1.2 25 October 4, 2016
Oreo 8.0 26 August 21, 2017
Oreo 8.1 27 December 5, 2017
Pie 9.0 28 August 6, 2018
Android 10 10.0 29 September 3, 2019
Android 11 11 30 September 8, 2020

Table 1-1: Android version, code name and API level provided by Google

01 Getting Started with Android

Wi o & | ‘

Cupcake Donut Eclair Froyo Gingerbread Honeycomb Ice Cream Sandwich

15 16 2.0/21 2.2 23 3.0/31 40
/ (! pon
& 2 Y) g \i
Ry e S

EW W &

Jelly Bean KitKat

Lollipop M K I N 0
4.1/42/43 44 50 arshmallow ougat 0

6.0 70 8.0

android

Figure 1-4: The first commercially available smartphone running Android was the HTC
Dream, also known as T-Mobile G1, announced on September 23, 2008

01 Getting Started with Android

Features of Android

Android Features & Descriptions

Beautiful Ul
e Android OS basic screen provides a beautiful and intuitive user interface.
Connectivity
e GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth, Wi-Fi, LTE, NFC and WiMAX.
Storage
e SQlite, a lightweight relational database, is used for data storage purposes.
Media Support
e H.263, H.264, MPEG-4 SP, AMR, AMR-WB, AAC, HE-AAC, AAC 5.1, MP3, MIDI, Ogg
Vorbis, WAV, JPEG, PNG, GIF, and BMP.
Messaging
e SMS and MMS
Web Browser
e Based on the open-source WebKit layout engine, coupled with Chrome's V8
JavaScript engine supporting HTML5 and CSS3.
Multi-Touch
e Android has native support for multi-touch which was initially made available in
handsets such as the HTC Hero.
Multi-Tasking
e User can jump from one task to another and same time various application can run
simultaneously.
Resizable Widgets
e Widgets are resizable, so users can expand them to show more content or shrink
them to save space.
Multi-Language
e Supports single direction and bi-directional text.
GCM
e Google Cloud Messaging (GCM) is a service that lets developers send short message
data to their users on Android devices, without needing a proprietary sync solution.
Wi-Fi Direct
e A technology that lets apps discover and pair directly, over a high-bandwidth peer-
to-peer connection.
Android Beam
e A popular NFC-based technology that lets users instantly share, just by touching two
NFC-enabled phones together.

Table 1-2: Features of Android

01 Getting Started with Android

Architecture of Android

Android is an open source, Linux-based software stack made for a wide variety

of devices and form factors.

components of the Android operating system platform.

described in more detail below.

Each section

System Apps

Calendar

Content Providers
Activity

View System Resource

Native C/C++ Libraries

OpenMAX AL

Media Framework OpenGL ES

Bluetooth Camera

Linux Kernel

Drivers

Binder (IPC)

Bluetooth

Shared Memory

Power Management

Java API Framework

Location

Hardware Abstraction Layer (HAL)

Camera

Managers

Package Notification

Window

Telephony

Android Runtime (ART)

Core Libraries

Sensors

Display

Camera

Figure 1-5: The Android Software Stacks

The following diagram shows the main

is

01

Getting Started with Android

Descriptions of Android Software Stack

Linux Kernel

The basis of the Android platform for communication layer for
underlying hardware.

Using the Linux kernel allows Android to take advantage of key
security features and allows device manufacturers to develop
hardware drivers for well-known kernels.

Hardware Abstraction Layer (HAL)

The hardware abstraction (HAL) layer provides a standard interface
that showcases the hardware capabilities of a device to the higher-
end Java APl framework.

HAL consists of several library modules, each implementing an
interface for a specific type of hardware component, such as a
camera or Bluetooth module.

When the skeleton APl makes a call to access the device hardware,
the Android system loads the library module for that hardware
component.

Android Runtime (ART)

Android Runtime (ART) is the application process time environment
used by the Android operating system. ART performs a code
translation of application bytes into native instructions that are
then executed by the device’s run time environment.

Some key features of ART include ahead-of-time (AOT) and just-in-
time (JIT) compilation, optimized garbage collection (GC) and
enhanced debugging support, including custom sampling profilers,
detailed diagnostic exceptions and fault reports, and the ability to
set monitoring points to monitor specific areas.

Native C/C++ Libraries

Many core Android system components and services, such as ART
and HAL, are built from native code that requires native libraries
written in C and C ++.

The Android platform provides a Java framework API to
demonstrate the functionality of some of these native libraries to
applications.

01

Getting Started with Android

If developers want to develop applications that require C or C ++
code, Android NDK can be used to access some of these native
platform libraries directly from native code.

Java APl Framework

The entire suite of Android OS features is available through APIs
written in Java which allows high-level interactions with the
Android system.

These APls form the building blocks needed to create Android
applications by facilitating the reuse of modular system
components and services, which include the following:

i. Arich and extensive Display System that can be used to create
application Ul, including lists, grids, text boxes, buttons, and
even embeddable web browsers

ii. Resource Manager, provides access to non-code resources such
as strings, graphics, and localized layout files

iii. Notification Manager that allows all applications to display
special alerts in the status bar

iv. Activity Manager that manages the application life cycle and
provides a common navigation layout

v. Content Providers that allow applications to access data from
other applications, such as the Contacts application, or to
share their own data

vi. Developers have full access to the same framework APIs used
by Android system applications.

System Applications

Android comes with a bunch of core apps like the Browser, Camera,
Gallery, Music, Phone, Email, SMS messaging, Calendar and more.
System applications serve both as applications for users and to
provide key capabilities that developers can access from their own
applications.

For example, if the user's application wants to deliver an SMS
message, the user does not need to build its own function, instead
the user can ask which SMS application is already installed to
deliver the message to the specified recipient user.

Table 1-3: Android Software Stacks

01 Getting Started with Android

Android Devices in the Market

Mobile technology is gaining huge attention in the business and IT worlds.
This technology represents a dramatic change in the capacity of the
technology that enables potential economic advantages for those who can
take advantage of it. Mobile technology is the foundation of innovation in
reaching customers, and in redesigning business processes and software
products that led to the creation of many small businesses.

Android devices (phones and tablets) have a unique set of hardware and
software capabilities that make the way users interact with devices different
for each. To fully capture the capabilities of the device and not degrade the
user experience, developers must design such unique features.

Android devices originally used four hardware buttons to support the use of
the user’s device. These buttons are the Home Button, the Menu Button, the
Search Button, and the Back Button. Users can press one of these buttons at
any time during the use of the application, which will affect the functionality
of the application. The Home and Back buttons work without relying on code,
while the Menu and Search buttons only provide functionality if the
application is coded specifically to use these buttons.

=l r pss. Q

Figure 1-6: Android hardware buttons

10

01 Getting Started with Android

1.2
Set-up the

development
vironment for Android

Before any work can begin on Android application development, the first step
is to configure the computer system to function as a development platform.
This involves a number of steps consisting of installing the Java Development
Kit (JDK) and Android Studio Integrated Development Environment (IDE)
which also includes the Android Software Development Kit (SDK).

Android application development can be done on one of the following
platforms. See below to see the minimum specs you need to play with your
Android device!

e 64-bit Microsoft® Windows® 8/10
e x86_64 CPU architecture; 2nd generation Intel Core or newer, or AMD
CPU with support for a Windows Hypervisor
Windows e 8 GBRAM or more
e 8 GB of available disk space minimum (IDE + Android SDK + Android
Emulator)
e 1280 x 800 minimum screen resolution

e MacOS® 10.14 (Mojave) or higher
e ARM-based chips, or 2nd generation Intel Core or newer with support
for Hypervisor.Framework

Mac e 8 GB RAM or more
e 8 GB of available disk space minimum (IDE + Android SDK + Android
Emulator)

e 1280 x 800 minimum screen resolution

11

01 Getting Started with Android

Linux

Chrome
oS

Any 64-bit Linux distribution that supports Gnome, KDE, or Unity DE;
GNU C Library (glibc) 2.31 or later

x86_64 CPU architecture; 2nd generation Intel Core or newer, or AMD
processor with support for AMD Virtualization (AMD-V) and SSSE3

8 GB RAM or more

8 GB of available disk space minimum (IDE + Android SDK + Android
Emulator)

1280 x 800 minimum screen resolution

8 GB RAM or more recommended

4 GB of available disk space minimum

Intel i5 or higher (U series or higher) recommended
1280 x 800 minimum screen resolution

Table 1-4: Android Studio specifications’ platforms

12

01 Getting Started with Android

Installing the Java Development Kit (JDK) and
Android Studio Package

Android Studio is available for computers running Windows or Linux, and for
Macs running macOS. OpenJDK (Java Development Kit) is integrated with
Android Studio.

The installation is similar for all platforms.
1. Navigate to the Android Studio download page located at the following

URL https://developer.android.com/studio and follow the instructions
to download and install Android Studio.

2. Accept the default configuration for all steps, and make sure all
components are selected for installation.

3. Once the installation is complete, the setup wizard downloads and
installs additional components, including the Android SDK. Be patient,

as this process may take some time, depending on your internet speed.

4. When the installation is complete, Android Studio starts, and you’re
ready to create your first project.

13

https://developer.android.com/studio

01 Getting Started with Android

TUTORIAL: Set Up the Development Environment for Android

Learning Outcomes:
By the end of this tutorial, you should be able to set up the development environment for
Android.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:
A. Download and Set-up Java Development Kit (JDK)

1. Download the latest version of Java JDK from Oracle's Java site
https://www.oracle.com/java/technologies/javase-downloads.html

2. Follow the given instructions to install and configure the setup.

3. Finally set PATH and JAVA_HOME environment variables to refer to the directory
that contains java and javac.

Alternatively, if using on Windows, right-click on My Computer, select Properties,
then Advanced, then Environment Variables. Then, update the PATH value and press
the OK button.

B. Download and Set-up Android Studio

4. Download the latest version android studio from Android Studio site
https://developer.android.com/studio

android
studio

Android Studio provides the fastest tools for building apps on every type of Android
device.

Download Android Studio

Figure 1-7: Download Android Studio from the Android Studio website

5. Run on windows machine according to android studio wizard guideline.

14

https://www.oracle.com/java/technologies/javase-downloads.html
https://developer.android.com/studio

01 Getting Started with Android

6. Launch Android Studio.exe.

Welcome to Android Studio Setup

Setup wil guide you through the installation of Android
Studio.

Itis recommended that you dose all other applications
before starting Setup. This wil make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue,

Figure 1-8: Android Studio Setup launcher

7. Initiate JDK path or later version in android studio installer.

Verifying your system meets the minimum requirements
System Check

We could not detect a Java Development kit (JDK) v7 or newer on your system, Please
browse to its path if known:

Browse. ..

or dowrload the following compatible J0K: jck-7uG7-nindows-x64.exe
and press ‘Next' after installation is complete.

Figure 1-9: Android Studio Setup - JDK initiation

8. Check the components, which are required to create applications.

Choose Components
Choose which features of Android Studio you want to install.

Chedk the compenents you want to install and uncheck the components you don't want to
install. Click Next to continue.

Select components to install: Android Studio E=as i
. Pasition yaur mouse
Android SDK over & component to

Android Virtual Device see its description.
Performance (Intel® HAX

Space required: 3.8G8

Next >

Figure 1-10: Android Studio Setup — Choose Components

01 Getting Started with Android

9. Specify the location of local machine path for Android Studio and Android SDK.

10. Specify the ram space for Android emulator by default it would take 512MB of local
machine RAM.

Configuration Settings
Install Locations

Configuration Settings
Emulator Setup

Android Studio Installation Location

Ve have detected that your system can run the Android emulator in an accelerated
performance made.

The location spedified must have at least S00MB of free space.
EarrmEaciies Please set the maximum amount of RAM available for the Intel Hardware Accelerated

Manager (HAXM) to use for all x86 emulator instances.

C:\Program Files\Android\Android Studio Browse..

You can change these settings at any time. Please refer to the Intel HAXM Documentation
for more information.

Android SDK Installation Location
(@) Recommended: 512MB
(O custom: 512 MB

*This value must be between 512 MB and 1GB

The location specified must have at least 3.28 of free space.
Click Browse to customize:

Ci\Users\ \AppData\Local\Androidisdk Browse...

Mote: Setting aside large memory reservation may cause other programs to run slowly
when using the x86 Android emulator with HAXM.

< Back Next >

Figure 1-11: Android Studio Setup — Configuration Settings

11. Atfinal stage, it would extract SDK packages into our local machine, it would take a
while time to finish the task and would take 2626MB of Hard disk space.

Installing
Please wait while Andreid Studio is being installed.

Extracting Android SDK... 4% (108 / 2626 MB)

Exctract: terminal jar... 100%
Output folder: C:\Program Files\?
Qutput folder: C:\Program Files\2
Extract: resources_en jar... 100%

Exiract: testng-pluginjar... 100%

Extract: testng.jar... 100%

Output folder: C:\Program Files\Android\Android Studio
Output folder: C:\Jsers\SAIRA_~1\AppData ocal{Temp
Extract: android-sdk. 7z

Output folder: C:\Jsersisaira_000\AppData L ocal\Android\sdk

Next > Cancel

Figure 1-12: Android Studio Setup — Installing

12. After done all above steps perfectly, get finish button and it going to be open
Android Studio Project with Welcome to Android Studio message.

16

01 Getting Started with Android

1.3

Develop first Android
Application

Before moving on to a slightly more advanced topic, now is a good time to
verify that all the required development packages are installed and working
properly. The best way to achieve this is to create an Android app, compile
and run it. You will write Android applications in the Java programming
language using an IDE called Android Studio. Android Studio is an IDE designed
specifically for Android development.

This lesson describes how to create a simple Android application project using
Android Studio. You will learn how to create a new Android project and create
"Hello, World!" project with Android Studio.

If you don't have a project opened, Android Studio shows the Welcome screen,
where you can create a new project by clicking Start a new Android Studio
project. If you do have a project opened, you start creating a new project by
selecting File > New > New Project from the main menu. You should then see
the Create New Project wizard, which lets you choose the type of project you
want to create and populates with code and resources to get you started.
Once the project is created, you will explore the use of the Android emulator
environment to run application tests.

17

01 Getting Started with Android
I —

TUTORIAL: Develop First Android Application

Learning Outcomes:

By the end of this tutorial, you should be able to create a "Hello, World!" project with Android

Studio and

Hardware/Software:

run it.

Computer, Android Studio and latest SDK version.

Procedure:

A. Create a new project

1. Open Android Studio

2.

Inthe Welcome to Android Studio dialog, click+ Create New Project link
to get started.

Android Studio

=+ Create New Project
& Open an Existing Project
«’ Get from Version Control

1 Profile or Debug APK

Cs Import Project (Gradle, Eclipse ADT, etc.)

¥ Import an Android Code Sample

12 Configure * Get Help =

3.

Figure 1-13: Android Studio welcome screen

In the Select a Project Template Window, select Empty Activity. Click

Next.

18

01 Getting Started with Android

i Create New Project x

0 Select a Project Template

Phone and Tablet Wear 0S5 Android TV Automotive Android Things

....... .
H
.
........
Mo Activity Basic Activity Bottom Navigation Activity Empty Activity
!
La

Empty Activity

Creates a new empty activity

el . IR

Figure 1-14: Select a Project Template Window

4. Inthe Configure Your Project window, use the following data of input for your
project:
e Give application a name such as My First Application.
e SelectJava from the Language drop-down menu.
e Leave the defaults for the other fields.

5. Click Finish.

6. After some processing time, the Android Studio main window appears.

o File Edit te Code Analyze Refactor Buld Run Tools VCS Wind M wa [My_First_Application.app] - Android Studio - o x
lation app obile - example = myfirstapplication € MainActivity el2API30 ¥ | B -3 & 35 = Dl Q
g = Android ~ @ I B — & acthi -
s Q
£ PP v
S manifest: =
j mport
b
g res
&
4 @ Gradle Scripts
¥
¥
<
o
] g
& h
& 0
s
27000 M Terminal A\ Build = Gilogcat (@ Profiler = Database Inspector @ Eventlog M Layout Inspector
[0 * daemon started successfully (10 minutes ago) 1057 CRIF UTF-6 dspaces W &

Figure 1-15: Android Studio main window

19

01 Getting Started with Android

B. Explore the Project Structure and files

7. First, be sure the Project window is open (select View > Tool Windows >
Project) and the Android view is selected from the drop-down list at the top of
that window.

I 1
Gle Edt View Navigate Code Andze Refactor uld fun Ipls VCS Window Help My First Application - MainActiviyjavs (My First Appicationappl - Android Studio - m] X
| MyFirstApplication ' app ' src main java mobile = example myﬂr;ipph(stmn © MainActivity app v | [LPxel2API30 ¥ | B -3 o m Dl Q
1 5 Android ~ B = & — g activity_mainxml & MainActivityjava -
I g app package mobile.example.myfirstapplication; v §
=i &
- manifests I)
1 i, AndroidManifestcml import ...
» jova
| g mobile.example.myfirstapplication I | public class MainActivity extends AppCompatactivity [
H
3
1 g mobile.example.myfirstapplication (androidTest
f{ mobile.example.myfirstapplication (test 1 st
|
drawable 1
I layout
I iy activity_mainaxml I]
mipmap I
1]: :
o build.gradle (Module: My | ion.app; 1
I Ll 11 gradle-wrapper.properties ersion
£ proguard-rules.pro (ProG for My._First Application.apa)] &
I £ 1 gradle.properties (Pro) g
1 : settings.gradie (Projc. 1 g
=l i local properties (SDK Location I
T | g
E 2
:
3 !
™]
i=70D0 B Terminal A\ Build = 6:logeat 2 Profiler = Database Inspector Al Eventlog M Layout Inspector
[0 * daemon started successfully (14 minutes ago) 142 CRLF UTF-8 4spaces m

Figure 1-16: Review the generated Project Structure and files

8. Inthe Project > Android view you see four top-level folders below your app
folder: manifests, java, res and Gradle Scripts.

©

Expand the manifests folder.

app > manifests > AndroidManifest.xml
The manifest file describes all the components of your Android app and is read
by the Android runtime system when your app is executed.

10. Expand the java folder. All your Java language files are organized here.
app > java > com.example.myfirstapp > MainActivity
This is the main activity that contains the Java source code files for your

Android app. It's the entry point for your app. When you build and run your
app, the system launches an instance of this Activity and loads its layout.

20

01 Getting Started with Android

11. Expand the res folder. This folder contains all the resources for your Android app,
including images, layout files, strings, icons, and styling.

app > res > layout > activity_main.xml

This XML file defines the layout for the activity's user interface (Ul). It contains
a TextView element with the text "Hello, World!"

12. Expand the Gradle Scripts folder.

Gradle Scripts > build.gradle
There are two files with this name: one for the project "Project: My_First_
Application” and one for the app module "Module:
My_First_Application.app". Each module has its own build.gradle file.
Each module's build.gradle file use to control how the Gradle plugin builds
app.

C. Create Android Virtual Device (AVD)

13. To create a new AVD, open the AVD Manager via the Tools > AVD Manager
menu tab.

14. Define AVD by clicking the Create Virtual Device button, at the bottom of the
AVD Manager dialog (Figure 1-17).

Android Virtual Device Manager

Your Virtual Devices

Android Studio

Type Name Play Store Resolution APl Target CPU/ABI Size on Disk = Actions

[Pixela. > 1080 1920: 420dpi 30 Android 11.0 (Google Play) ~ x86 1168 > £ -

"""""""
IS

0

+ Create Virtual Device...

h—

I

Figure 1-17: Android Virtual Device Manager

15. The Select Hardware dialog appears (Figure 1-18). Select values and then click
Next.

21

01 Getting Started with Android

16. Notice that only some hardware profiles are indicated to include Play Store. This
indicates that these profiles are fully CTS compliant (Compatibility Test Suite) and
may use system images that include the Play Store app.

i Virtual Device Configuration
0 Select Hardware
Choose a device definition
L[Pixel4
Category Name ~ PlayStore | Size Resolution Density
v Pixel XL 55" 144062560 560dpi
1950
Ratio: long
Weros B Densi: 440
B
Tablet Pixel 3a XL
Automotive Pixel 3a B
Pixel 3XL 6.3 14402960 560dpi
Pixel 3 B 548 1080x2160 440dpi
New Hardware Profile Import Hardware Profiles S Clone Device...

Figure 1-18: Virtual Device Configuration — Device Definition

17. The System Image dialog appears (Figure 1-19). Select the latest API level for
AVD, and then click Next.

e The Recommended tab lists recommended system images. The other tabs
include a more complete list.

e If you see Download next to the system image, you need to click it to
download the system image. You must be connected to the internet to
download it.

2= Virtual Device Configuration X

0 System Image

Select a system image

Recommended x5 Images Other Images

R

Release Name APlLevel > ABI Target

01 Levat
Q Download 30
Pic Download

inaroia
-
Oreo Download Google Inc.
Nougat Download
Nougat Download System Imege

x86

We recommend these Google Play images because this
device s compatible with Google Play.

Questions on API level?

Figure 1-19: Virtual Device Configuration — System Image

22

https://source.android.com/compatibility/cts/

01 Getting Started with Android

18. The Verify Configuration dialog appears (Figure 1-20). Afterwards, click
Finish button. This will create the AVD configuration and display it under the list
of available virtual devices.

=i Virtual Device Configuration x

0 Android Virtual Device (AVD)

Verify Configuration

AVD Name | Pixel 4 API 30| AVD Name

CO pixers 5.7 1080x2280 xxhdpi Change.

The name of this AVD.
" 13 Android 11.0x86 Change..
Startup orientation u
Portrait Landscape
tomat
Show Advanced Settings

2 Previous Next cancer | [N

Figure 1-20: Virtual Device Configuration — Verify Configuration

19. The AVD appearsinthe Your Virtual Devices dialog (Figure 1-21). You can now
ready to deploy and run your application on this virtual device.

4 Android Virtual Device Manager — a X

Your Virtual Devices
Android Studio

Type | Mame Play Store | Resolution APl Target CPU/ABI | SizeonDisk ~ Actions

E‘D Pixel 2 API 30 B 1080 x 1920: 420dpi 30 Android 11.0 (Goegle P... x86 11GB > Fa -

+ Create Virtual Device...

4]
X}

Figure 1-21: Android Virtual Device Manager - Your Virtual Devices page

23

01 Getting Started with Android
I —

D. Run your app on an emulator

20. In the toolbar, select your app from the run/debug configurations drop-down

menu.

21. From the target device drop-down menu, select the AVD emulator that you want

to run your app on.

¥ 1P

MyFirstApplication ' app sic | main jave | mebile exsmple myfirstapplic

File Edit View Nevigate Code Anslyze Refoctor Build Run Tools VCS Wind - o x

= EaLe Q

Android B T 0 = &adi
v

e g

mple.myfirstapplication

mipte.myfirstapplication (2o dTes
mple.myfirstapplicstion (te

Biogtg)y seg £

=T000 D Terminsl [Ostsbase Inspecior 2 Profiler = & Logest Qfventiog T Loyout Inspector
11 CRLF UTF-8 4spaces ‘m &

22

23

Figure 1-22: AVD emulator selection

. Click Run ™.

. The AVD emulator starts and boots just like a physical device. Depending on the
speed of your computer, this may take a while. You can look in the small horizontal
status bar at the very bottom of Android Studio for messages to see the progress.

Messages that might appear briefly in the status bar

1. Gradle build running & Gradle Build Running
]
2. Waiting for target device
& . g ' Waiting for target device to come online
to come online]
3. Installing APK 2, Installing APK
|

ale

Launching activity

|
Table 1-5: AVD Emulator activities

4. Launching activity

24

01 Getting Started with Android
I —

24. Once your app builds and the emulator is ready, Android Studio uploads the app
to the emulator. You now see "Hello, World!" displayed in the app.

My First Applicatior tivity.java [My_First_Application.app] - Android Studio - o x
MyFirstApplication app = src ~ app v | [LPixeldAPI30 ~ G & -] m B E DL e Q
§ = Android © Mainactivityjava Emulator: [, Pixel 4 API30 o —
z app e mobile. exanple. myfirstapplication; Yo e eDUWee D g
= manifests =
2 AndroidManifest.xmi import (
B java | 2 s0a
2 a public class MainActivity extends AppCompatActivity {
é My First Application
H ple.myfirstapplication (tes of Instancestate) {
b s
=
H
i
® el
2
&
aQ
5 @
2 2
& 5
* i
+| 13
H) B
H :
:
E=TODO M Terminal = Database lnspector /i Profiler b &Run 4 Build = & Logeat @ Eentlog 3 Layout Inspector
[0 Success: Operation succeeded (8 minutes ago) 11 CRLF UTF-8 dspaces W &

Figure 1-23: Android Studio environment

E. Import an existing project

To import an existing, local project into Android Studio, proceed as follows:
1. Click File > New > Import Project.
2. Inthe window that appears, navigate to the root directory of the project you want
to import.

3. Click OK.

Android Studio then opens the project in a new IDE window and indexes its contents.

25

SET-UP THE
DEVELOPMENT
ENVIRONMENT

FOR ANDROID

Design Application User Interface

Navigating Between Activities

Utilize Telephony and SMS Services

(02 Set-up The Development Environment for Android

2.1

Design Application
User Interface

lllustrate Activity Life Cycle

Activity in Android is one of the most important components of Android. It is
the Activity where we put the Ul of our application. Therefore, if we are new
in Android development then we have to learn what is Activity on Android and
what is the life cycle of Activity.

A. About the Activity

Every time we open the Android app, you will see some Ul drawn on our
screen. The screen is called Activity. An Activity represents a single screen
with a user interface just like window or frame and provides a visual
interface for user interaction. It is the basic component of Android and
every time you open an app, then we are opening some activities. Each
Activity usually supports one thing that the user can do, such as viewing
an email message or showing a login screen.

For example:
When we open our Gmail app, then we see our email on the screen. The

email is available in Activities. If we open some specific email, then that
email will be opened in some other Activity.

In Android, Activity is where the Android Application begins its process.
An Activity is an application user interface screen. There are a series of
methods carried out in an Activity. Applications often comprise several
activities.

In this chapter you learn about the activity lifecycle, the callback events you
can implement to perform tasks in each stage of the lifecycle, and how to
handle Activity instance states throughout the activity lifecycle.

27

(02 Set-up The Development Environment for Android

B. About the Activity Lifecycle

The activity lifecycle is the set of states an activity can be in during its
entire lifetime, from the time it's created to when it's destroyed and the
system reclaims its resources. As the user interacts with your app and
other apps on the device, activities move into different states.

For example (refer Figure 2-24):

1. When you start an app, the app's main activity ("Activity 1" in the
figure below) is started, comes to the foreground, and receives
the user focus.

2. When you start a second activity ("Activity 2" in the figure
below), a new activity is created and started, and the main

activity is stopped.

3. When you're done with the Activity 2 and navigate back, Activity
1 resumes. Activity 2 stops and is no longer needed.

4. If the user doesn't resume Activity 2, the system eventually

destroys it.
Start Navigate
/ Activity 2 \'/// back \
Activity 1 Activity 2 Activity 1
Activity 2
Activity 2
destroyed

Figure 2-24: The activity lifecycle process

28

(02 Set-up The Development Environment for Android

C. Activity States and Lifecycle Callback Methods

In general, activity lifecycle has SEVEN (7) Callback Methods. Let's see the
seven (7) lifecycle methods of android Activity. The seven (7) lifecycle
method of Activity describes how activity will behave at different states.

Figure 2-25 below shows each of the Activity states and the callback
methods that occur as the Activity transitions between different states.

onCreate()

0

onStart() -——— onRestart()

A
User navigates
to the activity onResume()

S o

/ Y~ ——"
App process | (Activity
. -

Anather activity comes
into the foreground

User returns
+ 1o the activity
Apps with higher priority
need memaory onPause()
|
The activity is
no longer visible User navigates
+ 1o the activity

onStopl))

|
The activity is finishing or
being destroyed by the system

v

onDestray()

0
4 Activity N

(ot)

Figure 2-25: The Activity states and lifecycle callback methods

29

(02 Set-up The Development Environment for Android

The Activity lifecycle consists of 7 methods:

Method Description

onCreate called when activity is first created.

onStart called when activity is becoming visible to the user.
onResume called when activity will start interacting with the user.
onPause called when activity is not visible to the user.

onStop called when activity is no longer visible to the user.
onRestart called after your activity is stopped, prior to start.

onDestroy called before the activity is destroyed.
Table 2-6: Activity Lifecycle’s methods

/" Resumed
 (visible)
onResumel) onPause()
onResume()
7 started '-\". L Paused
L (visible) J/ L (partially visible) 4
onStart() onstop()
onStart()
r e ——
| Created | nRestart{]———— ?ﬁ%‘:‘; I
onCreate() A —— onDestroy()

@I @

Figure 2-26: The Activity states and lifecycle callback methods

Depending on the complexity of your Activity, you probably don't need to
implement all the lifecycle callback methods in an Activity. However, it's
important that you understand each one and implement those that ensure
your app behaves the way users expect.

30

(02 Set-up The Development Environment for Android

TUTORIAL: Android Activity Lifecycle methods

Learning Outcomes:
By the end of this tutorial, you should be able to create android app that will displaying the
content on the logcat which show the activity life cycle.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:
A. Create android app to show the activity life cycle on the logcat

1. Open Android Studio and create new project. Name it as ActivityLifeCycle.
Create your package as well. It should be name as
com.example.activitylifecycle. Click Finish.

2. In the MainActivity.java, change the code in the onCreate() method as
shown below:

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

Log.d("lifecycle","onCreate invoked");

3. Then,stillin MainActivity.java, add all the method in Activity Life Cycle, as
shown below.

@0verride
protected void onStart() {
super.onStart();

Log.d("lifecycle","onStart invoked");
}

@0override
protected void onResume() {
super.onResume();

Log.d("lifecycle","onResume invoked");

}

@Override
protected void onPause() {
super.onPause();

Log.d("lifecycle","onPause invoked");

31

(02 Set-up The Development Environment for Android

@0override

protected void onStop() {
super.onStop();
Log.d("lifecycle","onStop invoked");

}

@Override

protected void onRestart() {
super.onRestart();
Log.d("lifecycle","onRestart invoked");

}

@Override

protected void onDestroy() {
super.onDestroy();
Log.d("lifecycle","onDestroy invoked");

}

4. Import the util.Log package in your MainActivity.java.

import android.util.Log;

5. Leave your activity_main.xml file just the way it is. Now, run your program.
You will not see any output on the AVD emulator or device. You need to open
logcat.

848 & @

ActivityLifeCycle

Figure 2-27: AVD emulator

32

(02 Set-up The Development Environment for Android
|

6. See onthe logcat: onCreate, onStart and onResume methods are invoked.

Logeat e]

= Emulator Pixel 4_AP + com.example.activitylii ~ Verbose + Regex Show only selected app +

w I Structure

= logcat -
2021-86-982 16:48:23.491 7796-7796/com.example.activitylifecycle W/tivitylifecycl: Accessing hidden method
Landroid/view/View; ->computeFitSystemivindows (Landroid/graphics/Rect;landroid/graphics/Rect;)7 (greylist,

I m

reflection, allowed)

2821-86-82 16:48:23.491 7796-7796/com.example.activitylifecycle W/tivitylifecycl: Accessing hidden methed
Aendoodd/ el oy ke il Ay ke e W, (o At s et in g Llousd L

2821-86-82 16:48:23.603 7796-7796/com.example.activitylifecycle D/lifecycle: enCreate invoked

2821-86-82 16:48:23.689 7796-7796/com.example.activitylifecycle D/lifecycle: onStart invoked

2821-86-82 16:48:23.61@ 7796-7796/com.example.activitylifecycle D/lifecycle: onResume invoked

2821766 B2 16:48:23 855 7706 7830, con. example. activityliTecycle D/Hostconnection: HoStconnection::get() New

Host Connection established @xef@avedd, tid 7839

* 2: Favorites
IaInjg aj1d aaad o

o dl

K Build Variants
101N o

= TODO & Terminal £ Database Inspector P, 4: Run 7 Profiler “A Build = & Logeat Q Event Log 5, Layout Inspector

Figure 2-28: onCreate, onStart and onResume methods

7. When you run your app for the first time, in the logcat, it shows that the first
method that invoke is oncreate, and then onstart and onResume.

8. Now click on the HOME button. You will see in the logcat, method onPause and
onStop are invoked.

o
S Logeat a —
T
2
& & Emulator Pixel_4_AP com.example.activitylii Verbose = Regex Show only selected app =
=
=

= logeat -.. 0
2] ANDROID EMU gles max version_3 @ S
s . 20821-86-82 16:48:24.594 7796-7839/com.example.activitylifecycle I/OpenGLRenderer: Davey! duration=865ms; a2
| -
EI Flags=1, IntendedVsync=1187938239847, Vsync=1187954986513, 0ldestInputEvent=92233720836854775887, %’
* NewestInputEvent=@, HandleInputStart=118795822580@, AnimationStart=118795826616@, %_n

PerformTraversalsStart=118795832126@, DrawStart=1188383477288, SyncQueued=1188389632168, %

SyncStart=11588329884500, IssueDrawCommandsStart=1188351674688, SwapBuffers=1183759@01200,
23128,,QisuBu e Duar onlogeI 90, Spuconpleted-o,

FrameCompleted=1183823556008 Deﬂeueﬁuffer‘l}ur‘at
- e e -
2821-86-82 16:55:44.831 7796-7796/com.example.activitylifecycle D/1lifecycle: onPause invoked

2821-86-82 16:55:46.119 7796-7796/com.example.activitylifecycle D/1lifecycle: onStop invoked
e e e e e e o

K Build Variants
i []
Jojenwy o

iZ TODO B Terminal = Database Inspector P, 4: Run # Profiler “\ Build = 6 Logcat ﬂ Event Log (= Layout Inspector

Figure 2-29: onPause and onStop methods

9. Now see on the emulator. It is on the HOME. Now click on the center button to
launch the app again.

10. Now, click on the ActivityLifeCycle icon to launch the app again.

33

02

Set-up The Development Environment for Android

[

Figure 2-30: HOME

Figure 2-31: ActivitylLifeCycle icon

11. Now, see on the logcat: onRestart, onStart and onResume methods are

invoked.
Logeat o —
o Emulator Pixel_4_AP com.example.activitylii = Verbose Q- Regex Show only selected app
z
Z = logat =
‘_E_ 'i' ANDROID_EMU_gles_max_wversion_3_@
:; .y 2021-86-82 16:48:24.594 7796-7839/com.example.activitylifecycle I/OpenGLRenderer: Davey! duration=865ms;
Flags=1, IntendedVsync=1187938239847, Vsync=1187954986513, OldestInputEvent=0223372036854775887, m]
E NewestInputEvent=8, HandleInputStart=1137958225808, AnimationStart=1187958266108, g
'g_ PerformTraversalsStart=118795832120808, DrawStart=1188303477280, SyncQueued=1188389632168, é'
EI = Syncstart=1183832938450@, IssuelrawCommandsstart=118835187468@, SwapBuffers=1138759@@l2ea, %
* - FrameCompleted=118882358600@, DequeusBufferDuration=273188@, QueueBufferDuration=196518@, GpuCompleted=8, %_"
T 2021-86-02 16:55:44.831 7796-7796/com.example.activitylifecycle D/lifecycle: onPause invoked é
E G jeaiener aeissite; 119 7706 729/ con xpmple activityLifecycle b/Lifecycle; onstop dmvoked
'E & 2021-86-82 17:82:56.183 7796-7796/com.example.activitylifecycle D/lifecycle: onRestart invoked 1 [
= I2921—86—92 17:82:56.188 7796-7796/com.example.activitylifecycle D/lifecycle: onStart invoked | g
a 2021-86-82 17:82:56.118 7796-7796/com.example.activitylifecycle D/lifecycle: onResume invoked l Z
- . A r T rr T T T o E
iS TODO B Terminal = Database Inspector P, 4 Run (7 Profiler “S Build = B Logeat) Event Log T, Layout Inspector

Figure 2-32: onRestart, onStart and onResume methods

34

02

Set-up The Development Environment for Android

12. If you see the emulator, application is started again.

905 & @

ActivityLifeCycle

Figure 2-33: ActivityLifeCycle started again

13. You also can do other task such as open another app. As you do that, it also will

invoke the onPause and onStop method.

14. Now click on the Back button (closed the app). You will see method onPause,

onStop and onDestroy will be invoke. And that’s how its explain the Activity
Life Cycle.

1 Structure

* 2 Favorites

I Build Variants

Logcat o —
& Emulator Pixel_4_AP com.example.activitylit ~ Verbose ¥ Regex Show only selected app =

= logeat =

] ANDROID_EMU_gles_max_version_3_@

.y 2821-B6-82 16:48:24.594 7796-7839/com.example.activitylifecycle I/OpenGLRenderer: Davey! duraticn=865ms;

= Flags=1, IntendedVsync=1187938239847, Vsync=11879549@86513, OldestInputEvent=0223372@836854775887,
NewestInputEvent=8, HandleInputStart=118795822580@, AnimationStart=1187958266188,
PerformTraversalsStart=118795832128@, DrawStart=118838347728@, SyncQueued=11883@9632188,

— SyncStart=1188329584500, IssueDrawCommandsStart=118835187460@, SwapBuffers=11887598@1200, E

- FrameCompleted=1188323586@88, DequeueBufferDuration=2731@@, QueueBufferDuration=19651@@, GpuCompleted=@, %

= 2021-86-82 16:55:44.831 7796-7796/com.example.activitylifecycle D/lifecycle: onPause invoked 5_

e 2821-86-02 16:55:46.119 7796-7796/com.example.activitylifecycle D/1lifecycle: onStop inveked %
2021-86-82 17:82:56.183 7796-7796/com.example.activitylifecycle D/lifecycle: onRestart invoked =

= 2821-86-02 17:02:56.188 7796-7796/com.example.activitylifecycle D/lifecycle: onStart invoked =

O 205021 202256, 110 2795 22984 an ranple- S iy Lifsoval o D/Liferycls:, onfesume dryoked o .
2821-86-02 17:06:27.376 7796-7796/com.example.activitylifecycle D/lifecycle: onPause invoked ‘ -

— I 2821-86-82 17:86:29.885 7796-7796/com.example.activitylifecycle D/1lifecycle: onStop invoked I 2

I 2821-86-02 17:86:29.180 7796-7796/com.example.activitylifecycle D/lifecycle: cnbestroy invoked ' 3

C L)

= TODO B Terminal £ Database Inspector P, 4: Run @ Profiler “, Build = b Logcat ﬂ Event Log =1 Layout Inspector

Figure 2-34: onPause, onStop and onDestroy methods

35

(02 Set-up The Development Environment for Android

User Interface (Ul) of Android Application

A. User Interfaces

The Ul is placed on the Activity via the Activity's setContentView() method.
In Android, the Ul composes of View and ViewGroup objects, organized in
a single view-tree structure. Once a view-tree is constructed, you can add
the root of the view-tree to the Activity as the content view via Activity's
setContentView() method.

B. View

The first thing in Android you need to learn is something called Views. A
View is a rectangular area visible on the screen where the user can see and
interact with. A View is an interactive Ul component, widget or control,
such as TextView, EditText, Button, RadioButton, etc., in package
android.widget. It has a width and height, and sometimes a background
color. A View is responsible for drawing itself and handling events such as
clicking and entering texts.

The illustration —— A\
(Figure 2-35) shows — \ v l E— w S

Views of three

different types. |{

|
An ImageView ‘r‘-
displays an image :_
such as an icon or C

photo. A TextView
displays text. A

I T et e i
Button is a TextView | R T < . TextView
that is sensitive to Kangaroo Valleys Safari « EditText
touch: tap it with el | I
. . o CheckBox
your finger and it e « RadioButton
will respond. < ® i} » ImageButton

* Progress Bar

/) * Spinner

Figure 2-35: Views

36

(02 Set-up The Development Environment for Android
I —

C. ViewGroup

ViewGroup is an invisible container that defines the layout structure for
View components. There are many types of ready-to-use ViewGroups in
Android. Following are the commonly used ViewGroup subclasses in
android applications:

Linear Layout, Relative Layout, Table Layout, Frame Layout,
Web View, List View and Grid View.

A ViewGroup is a big View that can contain smaller Views inside of it. The
smaller Views are called the children of the ViewGroup and might be
TextViews or ImageViews. The ViewGroup is called the parent of its
children. The illustration (Figure 2-36) shows one of the most common
ViewGroups, a vertical LinearLayout.

The ViewGroup itself might be transparent, serving only to contain and
position its children. Its children, however, will almost always be visible.
ViewGroup has height, width, background color and other attributes, even
its also can be transparent bacground.

VIEW GROUFPS

the invisible container that holds View and ViewGroup

) Chat

Video Call

Free Phone Call

Figure 2-36: ViewGroups

37

(02 Set-up The Development Environment for Android

D. XML Tag

The XML is a notation for writing a file containing pieces of information
called elements. To indicate where an element begins and ends, we write
tags. A tag is easy to recognize because it always begins and ends with the
characters < and >. An element often consists of a pair of tags, plus all the
content between them. The standard structure of XML tag looks like this:

<tag_name
attribute 1_name="attributel_value"
attribute 2_name="attribute 2_value"
attributeN_name="attributeN_value" >

some content

</tag_name>

An element that does not need to enclose any content can consist of a
single tag. In this case, the tag ends with the characters /> and we say that
it is a self-closing tag. The standard structure of XML self-closing tag looks

like this:
<tag_name
attributes..
attributes..
/>

Sample code:

O R,

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical”> Standard

= e e e e

structure of
XML tag

<TextView
android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="TextView"
android:textSize="20sp"
android:background="#6000000"
android:textColor="#FFFFFF"

/>

----_I

(
|
|
|
|
|
|
|
| !
: self-closing tag
1 |

|

\

- -

</LinearLayout>

e T T T T L T T L T T L T T T TS
e

4

\-——‘

4

38

(02 Set-up The Development Environment for Android

E. Android Defining Styles

To create an Android defining style, we need to follow the below steps:
e We need to add <style> element in the XML file with a name
attribute to uniquely identify the style.
e To define attributes of style, we need to add an <item> elements
with a name that defines a style attribute and we need to add
appropriate value to each <item> element.

Following is the example of defining a style in separate XML file using
<style> element. We created a style “TextviewStyle” with all required style
attributes.

<style name="TextviewStyle">
<item name="android:id">textView</item>
<item name="android:layout_width">wrap_content</item>
<item name="android:layout_height">wrap_content</item>
<item name="android:text">TextView</item>
<item name="android:textSize">20sp</item>
<item name="android:backround"”>#000000</item>
<item name="android:textColor" >#FFFFFF</item>
</style>

F. Density Independence Pixels

Density Independent Pixel is an abstract unit that is based on the density
of a screen. These units help maintain Ul elements with the same physical
dimensions across different density devices while maintaining the
element's sharpness. The denser the screen, the more pixels are needed to
maintain the same physical dimensions. In Android Development, we have
seen many developers using device-independent pixels (dp) and scale-
independent pixels (sp) as a measurement unit for all the views. Both dp
and sp follow the concept of density and can be used almost identically,
albeit with a few differences.

Device-Independent Pixels (dp) Scale-Independent Pixels (sp)

It is used for defining text size,
as it scales according to the font
size preference on a mobile
device.

It used for defining the sizes in
all widgets, ranging from
TextView to LinearLayout.

39

(02 Set-up The Development Environment for Android
|

Sample code:

<Button
android:layout_width="75dp"
android:layout_height="60dp"
android:textSize="18sp"

/>

G. Hex Color (Hexadecimal Color)

A color is created by mixing together red, green, and blue, in that order.
Write a hash sign (#) and then specify the amount of each component with
a pair of “hexadecimal digits” where 00 is the minimum amount, FF is the
maximum, and 80 is halfway. You can directly specify the value as HEX color
code as we do for CSS files in HTML.

Sample code:

android:background="#FFFFCC"
android:textColor="#9C27B0"

40

(02 Set-up The Development Environment for Android
|

TUTORIAL: Create User Interface of Android Application

Learning Outcomes:
By the end of this tutorial, you should be able use the Android Studio Layout Editor to create
a layout that includes a textbox and a button.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:
A. Open the Layout Editor
1. Inthe Project window, open app > res > layout > activity_main.xml.

2. If your editor shows the XML source, click the Design tab at the top right of the
window.

File Edit View Mavigate Code Anahyze Refactor Buid Run Tools VCS Window Help My First Application - activity mainxmi [My First Application.app] - Android Studio - o x
MyFirstApplication = app ~ src main res layout g activity_mainxml ~ app ¥ L Pixel 32 API30x86 v B E-1 oo ®x De e Q
5 Android @ = & — @ activity_mainxml © MainActivityjava »
< ————— o
& ap = Code Z0Split MiDesign 3
oy manifests - _ 5
L jova Palette Q& — €& QO 0OPxelv 30~ (© MyFirstApplication v &) Default (en-us) ~ 0 =
=
5 mobile.examplemyfirstapplication Comman TextView © N, F T e E gﬂ
g < — Butten 213
3 m lemyfirstapplication (sndroicTest) ¢ ImageView o S
g mobile.example.myfirstapplication (te:¢ RecyclerView s
H Widgets - 2
g res gment: E
& > @ Gradle Scripts Layouts ScrollView
Containers Switch
Helper
Google
Legacy
o —
ayo ello
TextView “Hello World
2
@
0| B
G * .
B D
- g
= 2
H " H
= = E
H V2 <
= H
i=70D0 A Terminal I A Build = &logaat (3 Profilr = Database Inspector M EventLlog T Layout Inspector
[0 * daemon started successfully (25 minutes ago) 11 CRIF UTF2 4spaces W B

Figure 2-37: The Layout Editor showing activity_main.xml

3. The Component Tree panel shows the layout's hierarchy of views. In this case,
the rootview isa ConstraintLayout, which contains just one TextView object.

41

(02 Set-up The Development Environment for Android
|

4. Notice the Palette at the top left of the layout [, - Q& —
editor. Move the sides if you need to, so that you Common TextView
can see many of the items in the palette. Text Button
ImageYiew

5. Clickon some of the categories, and scroll the listed
items if needed to get an idea of what's available.

Buttons X
RecyclerView
Widgets

<fragment>
Layouts ScrollView
Containers Switch
Helpers

Google

Legacy

Figure 2-38: Palette

B. TextView with example in Android Studio

6. TextView displays text to the user and optionally allows them to edit it
programmatically.

TextView code in XML:

<TextView

android:id="@+id/textView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintHorizontal_bias="0.247"
app:layout_constraintLeft_toLeftOf="parent"
app:layout_constraintRight_toRightOf="parent"
app:layout_constraintTop_toTopOf="parent"” />

7. Attributes of TextView :

id: used to uniquely identify a text view.

layout_width : specifies the basic width of the view.

layout_height: specifies the basic height of the view.

text: used to set the text in a text view.

wrap_content: the view expands only as much as needed to fit its
contents.

42

(02 Set-up The Development Environment for Android

C. Add Button and constrain the position

8. Let’s add Button and align the baselines by /_\
move the cursor over the circle at the top of the Hello World!4— —
Button onto the circle at the top of the M
TextView.

Figure 2-39: The Button is
aligned with the TextView

Button code in XML:

<Button
android:id="@+id/button™
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginStart="50dp"
android:layout_marginLeft="50dp"
android:text="Button"
app:layout_constraintStart_toEndOf="@+id/textView"
app:layout_constraintTop_toTopOf="@+id/textView" />

9. To delete an individual constraint, hover over the circular handle and click it has it
turns thick line and then Delete.

o m
3
. O

o

Figure 2-40: Deleting constraints

10. Before adding another Button, relabel this Button so things are a little clearer
about which Button is which.

e Click on the Button you just added in the design layout.
e Look atthe Attributes panel on the right, and notice the id field.

e Changetheid from button tosecond_button.

11. You can go ahead and try replacing some of your own layouts with a constraint
layout.

43

(02 Set-up The Development Environment for Android

Organize Layout

A layout defines the structure for a user interface in Android application, such
as in an activity. All elements in the layout are built using a hierarchy of View
and ViewGroup objects. A View usually draws something the user can see and
interact with. Whereas a ViewGroup is an invisible container that defines the

layout structure for View and other ViewGroup objects, as shown in figure
below.

View View

View View View

Figure 2-41: lllustration of a view hierarchy, which defines a Ul layout.

44

(02 Set-up The Development Environment for Android
|

Types of Layouts

A. Frame Layout - placeholder on screen that you can use to display a single
view

Framelayout is a ViewGroup
subclass that is used to specify the
position of View instances it
contains on the top of each other
to display only single View inside
the Framelayout. In simple
manner, Framelayout is designed
to block out an area on the screen
to display a single item.

Figure 2-42: The pictorial representation of
Framelayout in android applications

In android, FramelLayout will act as a placeholder on the screen, and it is
used to hold a single child view. In Framelayout, the child views are added
in a stack and the most recently added child will show on the top. We can
add multiple children views to FramelLayout and control their position by
using gravity attributes in FramelLayout.

Sample code:

<FramelLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto”
android:layout_width="match_parent"
android:layout_height="match_parent"” >

<ImageView
android:id="@+id/imageView"
android:layout_width="match_parent"
android:layout_height="match_parent”
android:scaleType="centerCrop"
app:srcCompat="@drawable/orange" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginTop="40sp"
android:text="This activity using
android:textSize="28sp"
android:background="#4C374A"

45

(02 Set-up The Development Environment for Android

android:

<TextView
android:
android:
android:
android:
android:
android:
android
android:
android:

</FrameLayout>

textColor="#FFFFFF" />

id="@+id/textView"
layout_width="wrap_content"
layout_height="wrap_content"
layout_gravity="right|bottom"
layout_marginBottom="40sp"
text="Frame Layout"

:textSize="28sp"

background="#4C374A"
textColor="#FFFFFF" />

Android_FrameLayout

This activity using

Frame Layout

Figure 2-43: Output of Android Framelayout example

46

(02 Set-up The Development Environment for Android

B. Linear Layout - aligns all children in a single direction, vertically or

horizontally

LinearLayout is a ViewGroup subclass which is used to render all child View
instances one by one either in Horizontal direction or Vertical direction
based on the orientation property. LinearLayout orientation can be

specified using android:orientation attribute.

In LinearLayout, the child View instances arranged one by one, so the
horizontal list will have only one row of multiple columns and vertical list
will have one column of multiple rows.

Horizontal

Figure 2-44: The pictorial representation of LinearLayout in android applications

Sample code:

<LinearlLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<EditText

android:
android:
android:
android:

<EditText

android:
android:
android:
android:

<EditText

android:
android:

id="@+id/txtTo"
layout_width="match_parent"
layout_height="wrap_content"
hint="To"/>

id="@+id/txtSub"
layout_width="match_parent"
layout_height="wrap_content"
hint="Subject"/>

id="@+id/txtMsg"
layout_width="match_parent"

Vertical

47

(02 Set-up The Development Environment for Android

android:
android:
android:
android:

<Button

android:
android:
android:
android:

</LinearLayout>

layout_height="edp"
layout_weight="1"
gravity="top"
hint="Message"/>

layout_width="100dp"
layout_height="wrap_content"
layout_gravity="right"
text="Send"/>

i

Android_LinearLayout

Figure 2-45: Output of Android LinearLayout example

48

(02 Set-up The Development Environment for Android

C. Table Layout - groups views into rows and columns

TableLayout is a ViewGroup
subclass that is used to display the

columns. In android, TableLayout

) L . . ,
will position its children’s Row2 Row?
elements into rows and columns, Col Coi2

and it won’t display any border

H Row3 Row3 Row3
lines for rows, columns, or cells.

The TableLayout in android will
work same as the HTML table and “
the table will have as many

columns as the row with the most
cells. The TableLayout can be Figure 2-46: The pictorial representation of

TablelLayout in android applications

explained as <table> and
TableRow is like <tr> element.

Sample code:

<TableLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:layout_marginTop="100dp"
android:paddingLeft="10dp"
android:paddingRight="1edp" >

<TableRow android:background="#33FCFF" android:padding="5dp">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Student Id" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="User Name" />
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Location" />
</TableRow>

49

(02 Set-up The Development Environment for Android

<TableRow android:background="#DAE8S8FC" android:padding="5dp">

<TextView

android:
android:
android:
android:

<TextView

android:
android:

android

<TextView

android:

android

</TableRow>

<TableRow android:background="#DAE8S8FC" android

<TextView

android:
android:
android:
android:

<TextView

android:
android:
android:
android:

<TextView

android:
android:

android

</TableRow>

<TableRow android:background="#DAE8S8FC" android

<TextView

android:
android:
android:
android:

<TextView

android:
android:
android:
android:

<TextView

android:
android:
android:
:text="Besut" />

android
</TableRow>

</TableLayout>

layout_width="wrap_content"
layout_height="wrap_content"
layout_weight="1"

text="1" />

layout_width="wrap_content"
layout_height="wrap_content"

:layout_weight="1"
android:

text="Suzana Dasari" />

layout_width="wrap_content"

:layout_height="wrap_content"
android:
android:

layout_weight="1"
text="Dungun" />

layout_width="wrap_content"
layout_height="wrap_content"
layout_weight="1"

text="2" />

layout_width="wrap_content"
layout_height="wrap_content"
layout_weight="1"
text="Rohana Alisha" />

layout_width="wrap_content"
layout_height="wrap_content"

:layout_weight="1"
android:

text="Kuala Terengganu" />

layout_width="wrap_content"
layout_height="wrap_content"
layout_weight="1"

text="3" />

layout_width="wrap_content"
layout_height="wrap_content"
layout_weight="1"
text="Trisha Divasini" />

layout_width="wrap_content"
layout_height="wrap_content"
layout_weight="1"

:padding="5dp">

:padding="5dp">

50

(02 Set-up The Development Environment for Android

y

Android_TableLayout

Student Id User Name Location
Suzana Dasari Dungun
Rohana Alisha Kuala Terengganu

Trisha Divasini Besut

Figure 2-47: Output of Android TableLayout example

51

(02 Set-up The Development Environment for Android

D. Relative Layout - displays child views in relative positions

RelativeLayout is a ViewGroup
which is used to specify the
position of child View instances
relative to each other (Child A to
the left of Child B) or relative to
the parent (aligned to the top of
parent). In android,
RelativeLayout is very useful to
design user interface because by
using RelativeLayout we can

eliminate the nested view groups
and keep our layout hierarchy flat, Figure 2-48: The pictorial representation of
Relativelayout in android applications

which improves the performance
of application.

In RelativeLayout we need to specify the position of child views relative
to each other or relative to the parent. In case if we didn’t specify the
position of child views, by default all child views are positioned to top-left
of the layout.

Sample code:

<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingLeft="10dp"
android:paddingRight="1edp" >

<Button
android:id="@+id/btn1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:text="Buttonl" />

<Button
android:id="@+id/btn2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentRight="true
android:layout_centerVertical="true"
android:text="Button2" />

52

(02 Set-up The Development Environment for Android

<Button
android:id="@+id/btn3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentLeft="true"
android:layout_centerVertical="true"
android:text="Button3" />

<Button
android:id="@+id/btn4"
android:layout_width="match_parent”
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:text="Button4" />

<Button
android:id="@+id/btn5"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@+id/btn2"
android:layout_centerHorizontal="true"
android:text="Button5" />

<Button
android:id="@+id/btn6"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_above="@+id/btn4"
android:layout_centerHorizontal="true"
android:text="Button6" />

<Button
android:id="@+id/btn7"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_toEndOf="@+id/btn1"
android:layout_toRightof="@+id/btn1"
android:layout_alignParentRight="true"
android:text="Button7" />

</RelativelLayout>

53

02

Set-up The Development Environment for Android

Android_RelativeLayout

BUTTON1 BUTTON7

BUTTON3 BUTTONS BUTTON2

BUTTON4

Figure 2-49: Output of Android Relativelayout example

54

(02 Set-up The Development Environment for Android

E. Grid Layout

In Android GridLayout, we can The number of rows and columns
specify the number of columns and within the grid can be declared
rows that the grid will have. We using the android:rowCount and
can customize the GridlLayout android:columnCount properties.

according to our requirements,
like setting the size, color or the

margin for the Layout. - - - -
A GridLayout basically places its - - - -
children in a rectangular grid. This

grid has a set of a number of thin

lines that separate the view area - - - -

into cells. Suppose you have a grid
of N columns, then we will have - - - -
N+1 grid indices that would be

starting from 0.

Figure 2-50: The pictorial representation of
GridLayout in android applications

Sample code:

<GridLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/GridLayout1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:columnCount="2"
android:rowCount="2" >

<Button
android:id="@+id/button1”
android:layout_gravity="1left|top"
android:text="Button 1" />

<Button
android:id="@+id/button2"
android:layout_gravity="1left|top"
android:text="Button 2" />

<Button
android:id="@+id/button3"
android:layout_gravity="1left|top"
android:text="Button 3" />

55

(02 Set-up The Development Environment for Android

<Button
android:id="@+id/button4"
android:layout_gravity="1left|top"
android:text="Button 4" />

</GridLayout>

Android_GridLayout

BUTTON 1 BUTTON 2

BUTTON 3 BUTTON 4

Figure 2-51: Output of Android GridLayout example

56

(02 Set-up The Development Environment for Android

Layout Attributes
Each layout has a set of attributes which define the visual properties of that
layout. There are few common attributes among all the layouts and their are
other attributes which are specific to that layout.

Following are common attributes and will be applied to all the layouts.

android:
android:

android:

android:

android:

android:

android:

android:

android

android:
android:
android
android:
android
android:

android

Attribute
id

layout_width

layout_height

layout_marginTop

layout_marginBottom

layout_marginLeft

layout_marginRight

layout_gravity

:layout_weight

layout_x

layout_y

:layout_width

paddinglLeft

:paddingRight

paddingTop

:paddingBottom

Description
Specifies the ID which uniquely identifies the view.

Specifies the width of the layout.

Specifies the height of the layout

Specifies the extra space on the top side of the
layout.

Specifies the extra space on the bottom side of the
layout.

Specifies the extra space on the left side of the
layout.

Specifies the extra space on the right side of the
layout.

Specifies how child Views are positioned.
Specifies how much of the extra space in the
layout should be allocated to the View.

Specifies the x-coordinate of the layout.

Specifies the y-coordinate of the layout.

Specifies the width of the layout.

Specifies the left padding filled for the layout.
Specifies the right padding filled for the layout.
Specifies the top padding filled for the layout.
Specifies the bottom padding filled for the layout.

Table 2-7: Layout attributes

57

(02 Set-up The Development Environment for Android

Adapt to Display Orientation

The screenOrientation, also known as screen rotation or display orientation
is the attribute of activity element. The orientation of android activity can be
portrait, landscape, sensor, unspecified etc. You need to define it in the
AndroidManifest.xml file.

Sample code:

<activity android:name="package_name.Your_ActivityName"
android:screenOrientation="orientation_type">
</activity>

Example:
<activity android:name=".MainActivity"

android:screenOrientation="portrait">
</activity>

<activity android:name=".SecondActivity"
android:screenOrientation="1landscape">
</activity>

PORTRAIT

& LANDSCAPE

Figure 2-52: Display orietation

58

(02 Set-up The Development Environment for Android
|

TUTORIAL: Change Display Orientation

Learning Outcomes:

By the end of this tutorial, you should be able to change screen orientation for Landscape and

Portrait mode.

Hardware/Software:

Computer, Android Studio and latest SDK version.

Procedure:

A. Creating the Activities

1. Create two (2) activities of different screen orientation. The first activity will be as
“portrait” orientation and Second activity as “landscape” orientation state.

2. Creating the XML file:
e activity_main.xml: XML file for first activity consist of constraint layout
with Button and TextView in it. This activity is in Potrait state.

<TextView

android:
android:
android:
android:

<Button

android:
android:
android:
android:
stext="Next Activity" />

android

id="@+id/textView"
layout_width="wrap_content"
layout_height="wrap_content"
text="Potrait Orientation" />

id="@+id/btnNext"
layout_width="wrap_content"
layout_height="wrap_content"
onClick="onClick"

e activity_next.xml: XML file for second activity consist of constraint
layout with TextView in it. This activity is in Landscape state.

<TextView

android:
android:
android:
android:

id="@+id/textView2"

layout_width="wrap_content"
layout_height="wrap_content
text="Landscape Orientation" />

59

(02 Set-up The Development Environment for Android

3. Creating the Java file:
e MainActivity.java: Java file for Main Activity, in which setOnClick()

listener is attached to the button to launch next activity with different
orientation.

public class MainActivity extends AppCompatActivity {

// declare button variable
Button button;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

// initialise button with id
button = findViewById(R.id.btnNext);
}

// onClickListener attached to button
// to send intent to next activity
public void onClick(View v){
// Create instance of intent and
// startActivity with intent object
Intent intent = new Intent(MainActivity.this,
NextActivity.class);
startActivity(intent);

e NextActivity.java: Java file for Next Activity, which is in Landscape
orientation.

public class NextActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity next);

60

(02 Set-up The Development Environment for Android

4. Updating the AndroidManifest file: In AndroidManifest.xml file, add the
screenOrientation state in activity along with its orientation. Here, we provide
“portrait” orientation for MainActivity and “landscape” for NextActivity.
Below is the code for AndroidManifest file.

e Define potrait orientation for MainActivity:

<activity android:name=".MainActivity"
android:screenOrientation="portrait">

e Define landscape orientation for NextActivity:

<activity android:name=".NextActivity"
android:screenOrientation="landscape">

5. Now, run your program. You will see output on the emulator or device.

107 o0&

Android_Orientation

MW OeE

Android_Orientation

NEXT ACTIVITY

Figure 2-53: Display orientation output

61

(02 Set-up The Development Environment for Android

Add Notifications and Actions to the Action Bar

Notifications are messages that Android displays outside of your app’s Ul to
give users alerts, reminders, communications from others, or other real-time
information from your app. Users can tap the notification to open your app or
take action directly from the notification. Notifications appear to users in
different locations and formats, such as icons in the status bar, more detailed
entries in the notification drawer, as badges on app icons, and on
automatically paired devices.

Status Bar and Notification Drawer

1. When you issue a notification, it first appears as an icon in the status
bar.

The status bar contains the clock,
battery icon, and other notification
icons as shown in an image. Most of
B 3 @4 0 7:00 the time, it is at the top of the

—— - screen.

Figure 2-54: Status bar

2. Users can swipe down on the status bar to open the notification drawer,
where they can see more details and take action with the notification.

Fi Network 100% W 7:00
LTE N
4 P | NS
Mon, Nov 6 o i

B Messages - now v

Justin Rhyss
Do you want to go see a movie tonight?

X Gmail - aliconnors@gmail com - 5m ~

Ali Connors Game tomorrow Don’t forget to bring your jers
Mary Johnson How did it go this week? Are you going.

N =

@ Google - 75° In Mountain View ~

Figure 2-55: Notification drawer

3. Users can drag notifications in the drawer to show an expanded view,
which shows additional content and action buttons, if provided.

4. Notifications remain visible in the notification drawer until terminated
by an application or user.

62

(02 Set-up The Development Environment for Android

Notification Anatomy
The design of a notification is determined by system templates.

¥ BasicNotifications * now ~

— Notification Title
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pell..

Figure 2-56: A notification with basic details

The most common parts of a notification are indicated in Figure 2-56 as
follows:

1. Small icon: This is required and set with setSmalllcon().

2. App name: This is provided by the system.

3. Title: This is optional and set with setContentTitle().

4. Text: This is optional and set with setContentText().

Action Bar

The Action Bar, if it exists for an activity, will be at the top of the activity’s
content area, typically directly underneath the status bar. It is a menu bar
that runs across the top of the activity screen in android. Android ActionBar
can contain menu items that become visible when the user clicks the “menu”
button.

12:30 v4dan
(N N B
| = Title Qi !
N o o -

Figure 2-57: Action bar

63

(02 Set-up The Development Environment for Android

TUTORIAL: Create a Basic Notification

Learning Outcomes:
By the end of this tutorial, you should be able to create a notification that the user can click
on to launch an activity in your app.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:
A. Set the notification content and notification’s tap action

1. Create two (2) activities. The first activity will be as “MainActivity” consist of
Button and TextView in it and second activity as “NotificationActivity”
consist of TextView in it.

2. Inthe MainActivity.java, add showNotification() method as shown below.

e To get started, you need to set the notification's content and channel using
a NotificationCompat.Builder object.

e Every notification should respond to a tap, usually to open an activity in
your app that corresponds to the notification. To do so, you must specify a
content intent defined with a Pendinglntent object and pass it to
setContentintent().

private void showNotification(Intent i) {

PendingIntent pendingIntent = PendingIntent.getActivity(MainActivity.this,
0, i, PendingIntent.FLAG_UPDATE_CURRENT);

NotificationCompat.Builder builder
= new NotificationCompat.Builder(MainActivity.this, "MYChannel")
.setSmallIcon(R.drawable.ic_baseline_announcement)
.setContentTitle("My Notification")
.setContentText("Hello world!! Let's create notification")
.setPriority(NotificationCompat.PRIORITY_DEFAULT)

.setContentIntent(pendingIntent)
.setAutoCancel(true);

NotificationManager notificationManager
= (NotificationManager) getSystemService(Context.NOTIFICATION_SERVICE);
notificationManager.notify(NOTIFICATION_ID, builder.build());

64

(02 Set-up The Development Environment for Android

B. Create a channel and set the importance

3. Still in the MainActivity.java, add createNotificationChannel() method as
shown below.

private void createNotificationChannel() {

// Create the NotificationChannel, but only on API 26+ because
// the NotificationChannel class is new and not in the support Library
if (Build.VERSION.SDK INT >= Build.VERSION_CODES.0) {

CharSequence name = "MY Channel";
String description = "Channel for MY notifications";
int importance = NotificationManager.IMPORTANCE _DEFAULT;

NotificationChannel channel = new NotificationChannel("MYChannel",
name, importance);
channel.setDescription(description);

// Register the channel with the system; you can't change the importance

// or other notification behaviors after this

NotificationManager notificationManager =
getSystemService(NotificationManager.class);

notificationManager.createNotificationChannel(channel);

C. Modify the onCreate() method
4. Change the code in the onCreate () method as shown below.

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);

//call method
createNotificationChannel();

btnNotify = (Button) findviewById(R.id.buttonNot1i);
getSupportActionBar().setSubtitle("Let's create notification.");

//function for button notification
btnNotify.setOnClickListener(new View.OnClickListener() {
@Ooverride
public void onClick(View v) {
//Create an explicit intent for an Activity in app
Intent i = new Intent(getApplicationContext(),
NotificationActivity.class);
i.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
//call method
showNotification(i);

1

65

(02 Set-up The Development Environment for Android

5. Now, run your program. You will get output of the notification app as shown below.

448 H »

NotificationDemo
Let's create notification.

Figure 2-58: Notification icons appear on the left side of the status bar

Y

Notifications

n MotificationDemo - now

My Notification
Hello world!! Let's create notification

oA ——
-

Figure 2-59: A notification with a title and text in the notification drawer

66

(02 Set-up The Development Environment for Android

Design User Interface with View

In Android applications, various types of ViewGroups are used to design Ul.
The following are Basic Views in Android applications.

e TextView

e EditText

e Button

e |mageButton

e CheckBox

e ToggleButton

e RadioBtton

e RadioGroup

67

(02 Set-up The Development Environment for Android

TUTORIAL: Create a Basic Views

Learning Outcomes:
By the end of this tutorial, you should be able to create basic views in android applications.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:
A. Implementation
1. Create a new Android project called AppView.
2. Bydefault, it creates activity_main.xml file which contains a TextView element.

3. Design the layout - use LinearLayout.

<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto”
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical”
tools:context=".MainActivity">

</LinearlLayout>

4. The TextView is used to display text/caption to the user. This is the most basic
View and very frequently used in an application.

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Hello World!" />

5. The next View is a subclass of TextView and itis EditText. This View allows the
user to edit the text displayed.

<EditText
android:id="@+id/txtUserName"
android:layout_width="fill_parent"
android:layout_height="wrap_content" />

68

(02 Set-up The Development Environment for Android
|

6. Button represents a push-button widget.

<Button
android:id="@+id/btnAdd"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="ADD" />

7. ImageButton issimilarto Button View except that it displays an image with text.

<ImageButton
android:id="@+id/imgButton”
android:layout_width="fill_parent"
android:layout_height="wrap_content"
app:srcCompat="@android:drawable/btn_star_big on" />

8. CheckBox is a type of button that has two states; i.e., checked or unchecked.

<CheckBox
android:id="@+id/chkStudent"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Student" />

<CheckBox
android:id="@+id/chkStaff"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="Staff" />

9. RadioGroup and RadioButton, both have two states: either checked or
unchecked. A RadioGroup is used to group together one or more RadioButton
Views, thereby allowing only one RadioButton to be checked within the
RadioGroup.

<RadioGroup
android:id="@+id/rdGroup"
android:layout_width="fill_parent"
android:layout_height="wrap_content
android:orientation="vertical">

<RadioButton
android:id="@+id/rbMale™
android:layout_width="fill_parent"
android:layout_height="wrap_content
android:text="Male" />

<RadioButton
android:id="@+id/rbFemale"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Female" />

69

(02 Set-up The Development Environment for Android

</RadioGroup>
10. ToggleButton displays checked/unchecked states using a light indicator.

<ToggleButton
android:id="@+id/toggleButton”
android:layout_width="fill_parent"
android:layout_height="wrap_content" />

11. Now, run your program. You will get output of the basic views as shown below.

AppView

Hello World!

[] student

[] staft

O Male
O Female

Figure 2-60: Basic views output

70

(02 Set-up The Development Environment for Android

12. Add some java code in the onCreate () method as below to handle View events
for elements, like Button and CheckBox.

Button buttonAdd = (Button) findViewById(R.id.btnAdd);
buttonAdd.setOnClickListener(new View.OnClickListener(){
@0verride
public void onClick(View view){
DisplayMessage("You have clicked the Add button");
}

})s

CheckBox checkBox = (CheckBox) findViewById(R.id.chkStudent);
checkBox.setOnClickListener(new View.OnClickListener(){
@Override
public void onClick(View view){
if (((CheckBox) view).isChecked())
DisplayMessage("Student check box is checked");
else
DisplayMessage("Student check box is unchecked");
}
1

13. Add a common method to display the text message as below.

private void DisplayMessage(String textMessage) {
Toast.makeText (getBaseContext(), textMessage,
Toast.LENGTH_SHORT) .show();

}

14. Run your program again. Try clicked the ADD Button and checked the Student
Checkbox. See the result of the implemented code.

71

(02 Set-up The Development Environment for Android

Display Image and Menu with View

Simple ImageView

One type of View is an ImageView, which displays an image such as an icon
or a photograph. An ImageView on the screen is drawn by a Java object inside
the Android device. In fact, the Java object is the real ImageView. But when
talking about what the user sees, it’s convenient to refer to the rectangular
area on the screen as the “ImageView”.

Sample code:
<ImageView
android:id="@+id/imageView"
android:layout_width="match_parent"
android:layout_height="wrap_content™
app:srcCompat="@drawable/house" /> €——

First, you need to put an image (house.jpg)
into the drawable folder under the res
folder in Android Studio.

Menu

Menus are a common user interface component in many types of applications.
To provide a familiar and consistent user experience, you should use the Menu
APls to present user actions and other options in your activities.
Each menu must have an XML file related to it which defines its layout. These
are the tags associated with the menu option:
i <menu> - This is the container element for menu (similar to
LinearLayout).
ii. <item> - This denotes an item and is nested inside of the menu tag.
Be aware that an item element can hold a <menu> element to
represent a submenu.

72

(02 Set-up The Development Environment for Android
|

TUTORIAL: Create an Android Menu

Learning Outcomes:
By the end of this tutorial, you should be able to implement an options menu in any of your
Android SDK applications.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:
A. Create a Resources Folder
1. Create a new Android project called Android_Menu.

2. To create a menu, you need a menu folder, so create one inside the "res" folder.

e Right click on res in the project view — —
. . R . " " EW REsoUrce LIrectory
in Android Studio and click "New" ->
"Android Resource Directory". Directory name: | menu
Change the resource type to "menu" [Resourcetype: | menu }
in the dropdown menu and then click "f=======—=========1r=
"OK" Source set: main sro/main/res

Figure 2-61: Create menu folder

3. YoucanseeanewAndroid Resource Directory "menu" gets created.
e Create menu file in menu folder,

Mew Resource File

right click on "menu" directory -> o e e e e

"New"->"Menu resource file".] e menwmen] 1
e Give the file name, menu_main, Rootelement: menu

then click Ok. Source set: ain ere/main e

Directory name: menu

Figure 2-62: Create menu
resource file

4. Now, you can see the directory structure, that res
shows the new file, menu_main.xml in drawable
director - ——
menu directory. Ie =t \
1 sy Menu_main.oml ’I
T T mipmap
wvalues

Figure 2-63: menu_main.xml|

73

(02 Set-up The Development Environment for Android

B. Create a Menu xml File

5. You can add one or more items to your options menu depending on the needs of
your own project. Add an item for each menu option using the following syntax inside
menu_main.xml.

<menu
xmlns:android="http://schemas.android.com/apk/res/android" >
<item android:id="@+id/about"
android:title="About"/>
<item android:id="@+id/help"
android:title="Help"/>
</menu>

C. Inflate your Menu resource

6. Add the following method to Java code, inside the class declaration and after the
onCreate() method.

public boolean onCreateOptionsMenu(Menu menu) {
MenuInflater inflater = getMenulInflater();
inflater.inflate(R.menu.menu_main, menu);
return true;

7. Run your program. You will get output of the android menu as shown below.

p

Android_Menu

Figure 2-64: Android menu output

74

(02 Set-up The Development Environment for Android

2.2

Navigating Between
Activities

Link Activities Using Intents

Android applications can contain zero ﬁ

or more activity. When your app has q
more than one activity, you may need First Activity Second Activity
to navigate from one activity to

another. In Android, you navigate -Tl d
between activities through what is ET
known as intent. An Intent is a

messaging object you can use to

request an action from another app -

component. Figure 2-65: Intents

Below is a sample code when you click the button, the second activity will
open.

Create a method that finds the Button
View with the given ID

Button btnNext = (Button) findViewById(R.id.btnShow); <&

btnNext.setOnClickListener(new View.OnClickListener(){ <€

@0verride

public void onClick(View view) {

—> Intent i = new Intent(getApplicationContext(),SecondActivity.cljss);
startActivity(i);

}

s

Set intent so that when user clicked
Button, it will open the second activity

Set event for Button

75

02

Set-up The Development Environment for Android

Type of Android Intents
There are two (2) types of intents in Android:

1.

Implicit Intent

It specifies the only action to be performed and does not directly
specify Android Components. They are used for communication
across two different applications.

The action generally specify that what is to be performed and
optionally some data is required for that action. Data is usually
expressed as a URI (Uniform Resource ldentifier) that can be
represent as an image in a gallery or a person in a contacts
database for instance.

Example: When you tap the SHARE button in any app you can see
the Gmail, Bluetooth, and other sharing app options. Here user
sends a request (implicit intent) which can be handle by these
Gmail, Bluetooth-like app.

Sample code:

Intent i = new Intent(Intent.ACTION_VIEW);

i.setData(Uri.parse(“http://www.javatpoint.com™));
startActivity(i);

2. Explicit Intent

It specifies for communication inside the application. Like
changing activities inside the application. The component name
is generally specified to which the intent has to be delivered.
Example: There are two activities (FirstActivity, SecondActivity).
When you click on ‘GO TO OTHER ACTIVITY’ button in the first
activity, then you move to second activity. When you click on ‘GO
TO HOME ACTIVITY’ button in the second activity, then you move
to the first activity.

Sample code:

Intent i = new Intent(getApplicationContext(),

SecondActivity.class);
startActivity(i);

76

(02 Set-up The Development Environment for Android

Passing Data using Intent Object

Through Intent we can move from one activity to another activity within the
same application. Intent can also be used to pass the data from one activity
to another activity.

(’

555 & -

Android_Intent

Hello melati

BACK TO MAIN

SHOW SECOND ACTIVITY I

Passing data
using intent
MainActivity SecondActivity

Figure 2-66: Passing data using intents output

Sample code:

public class MainActivity extends AppCompatActivity {

@0override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

//declare component
Button btnNext = (Button) findViewById(R.id.btnShow);
EditText txt_username = (EditText) findViewById(R.id.txtusername);

//function for button Next

btnNext.setOnClickListener(new View.OnClickListener(){
@yerride o e — e ————————

“public void onClick(View view) {

String name = txt_username.getText().toString();

Intent i = new Intent(getApplicationContext(),

SecondActivity.class);
i.putExtra(“name", name); <«
startActivity(i);

/

O T ———
\-———————

}

D S

|
\

Method putExtra() sends the data to
next activity by passing key-value pair

77

(02 Set-up The Development Environment for Android

public class SecondActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity second);

//declare component
Button btnBack = (Button) findViewById(R.id.buttonBack);

NN NN NN BN N BN BN NN BN BN BN NN N B SN NN N B NN N B SN NN BN B NN N B BN N B By

f \
I Intent i = getIntent(); |
I String uname = i.getStringExtra("name"); <€ :
l getSupportActionBar().setTitle("Hello " + uname); I

| SR S —————

//button back to MainActivity
btnBack.setOnClickListener(new View.OnClickListener(){
@Override
public void onClick(View view) {
Intent i = new Intent(getApplicationContext(),
MainActivity.class);
startActivity(i);

})s

Read data “name” from
MainActivity in ActionBar
(SecondActivity)

78

(02 Set-up The Development Environment for Android

2.3

Utilize Telephony and
SMS Services

Telephony

The Android SDK provides a number of useful utilities to integrate phone
features available on the device with applications. The telephony system is a
software framework to provide mobile phones with telephony functionalities,
such as voice call, Video call, SMS, MMS ,data service, network management
and so on. Telephony framework for Android has four (4) layered
Architecture.

1. Communication Processor
e Itisaninput/ output processor for transmitting and collecting data
from a number of remote terminals. It is a specialized processor
designed to communicate with a data communication network

2. Radio Interface Layer (RIL)
e This is the link between the hardware and services of the Android
phone frame. This is the protocol stack for Phones.

3. Android Telephony Services
e The Telephony Framework starts and is initiated along with the
system. All queries by the Application APl are addressed to RIL using
this service.

4. High Level Telephony Applications
e This is the Ul of a phone-related Application such as Dialer, SMS,
MMS, Call tracker, etc. The application is started with the android
system boot. This is tied to the telephone frame service.

79

(02 Set-up The Development Environment for Android
|

To uses telephony features, set the <uses-feature> tag with the
android.hardware.telephony feature (or one of its sub-features) in manifest
file. Adding telephony features to an application enables a more integrated
user experience and enhances the overall value of the application to the
users.

SMS Services

In android, we can send SMS from our android application in two (2) ways
either by using SMSManager API or Intents based on our requirements. If we
use SMSManager API, it will directly send SMS from our application. In case
if we use Intent with proper action (ACTION_VIEW), it will invoke a built-in
SMS app to send SMS from our application.

In android, to send SMS using SMSManager APl we need to write the code like
as shown below.

SmsManager smgr = SmsManager.getDefault();
smgr.sendTextMessage (MobileNumber,null,Message,null,null);

SMSManager APl required SEND_SMS permission in our android manifest to
send SMS. Following is the code snippet to set SEND_SMS permissions in
manifest file.

<uses-permission android:name = "android.permission.SEND_SMS"/>

80

(02 Set-up The Development Environment for Android

TUTORIAL: Create an Android Send SMS

Learning Outcomes:
By the end of this tutorial, you should be able to implement an Android send SMS application.

Hardware/Software:
Computer, Android Studio and latest SDK version. Android_Menu.

Procedure:
A. Create an Android Send SMS

1. Create a new android application using android studio.

2. Create anactivity_main.xml as shown below.

p

Telephony-SMS Services

Telephony Tutorial

Figure 2-67: Android send SMS layout

3. Open an MainActivity.java and modify the onCreate() method like as shown
below.

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

//declare component

txtPhoneNumber = (EditText) findViewById(R.id.editText_PhoneNumber);
txtMessager = (EditText) findViewById(R.id.editText_Message);
btnSend = (Button) findViewById(R.id.buttonSend);

//function for button Send

81

(02 Set-up The Development Environment for Android

btnSend.setOnClickListener(new View.OnClickListener(){
@Override
public void onClick(View view) {
if(Build.VERSION.SDK INT >= Build.VERSION_CODES.M){
if(checkSelfPermission(Manifest.permission.SEND _SMS) ==
PackageManager .PERMISSION_GRANTED){

sendSMS () ;
}else{
requestPermissions(new String[]{Manifest.permission.SEND_SMS},1);
}
}
}
s

}

4. Add sendSMS() method after onCreate() method like as shown below to send
SMS using SMSManager API.

private void sendSMS(){
//get data input
String phoneNO = txtPhoneNumber.getText().toString().trim();
String SMS = txtMessager.getText().toString().trim();

try{
//use SmsManager to send SMS
SmsManager smsMgr = SmsManager.getDefault();
smsMgr.sendTextMessage(phoneNO, null, SMS, null, null);
Toast.makeText(this, "Message Sent !", Toast.LENGTH_SHORT).show();
}catch(Exception e){
e.printStackTrace();
Toast.makeText(this, "Message Failed To Sent !",
Toast.LENGTH_SHORT) .show();

5. Following is the default content of AndroidManifest.xml to set SEND_SMS
permissions in manifest file.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.telephonyevent">

£ - -

: <uses-permission android:name="android.permission.SEND_SMS"/> :

s s s s s s o s s
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.TelephonyEvent" >
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

82

(02 Set-up The Development Environment for Android

|
</activity>
</application>

</manifest>

6. Let's try to run your application.

e You can enter a desired mobile number and a text message to be sent on that
number. Finally click on Send button to send your SMS.

e Make sure your GSM/CDMA connection is working fine to deliver your SMS to
its recipient.

y

Telephony-SMS Services

y

Telephony-SMS Services

Telephony Tutorial Telephony Tutorial

0126816764 0126816764

Hello Pn Mel| Hello Pn Mel

Melissa Melanie &

(mm———————————

-

Message Sent !

SMS sent successfully

Figure 2-68: Android send SMS output

83

DATA
PERSISTENCE
AND
‘MULTIMEDIA

Construct Persistence Data in
Android

Apply Graphics and Animations

Apply Multimedia Components

(03 Data Persistence and Multimedia

C o |

Construct Persistent
Data in Android

Various Data Persistence and Access Mechanism
in a Mobile Application

Android provides several options for saving data persistent applications. The
solution chosen will depend on specific needs, such as whether the data
should lose their application or be accessible to other applications (and users)
and how much space data takes up. Here are data persistence approaches:

1. SharedPreferences: store primitive private data on key-value pairs
2. FlatFiles: Save arbitrary files to internal or external device storage
3. SQLite Databases: store structured data in a private database

Each of these approaches provides relevant capabilities for different tasks in
the application. SharedPreferences are often used for a limited set of data
that represents users’ preferences about how they want the application
configured. They can also be used for other data that needs to survive
throughout life cycle changes. FlatFiles are useful for backing up data and
sending it to other users. Finally, databases are the workforce for data
manipulation, storage, and retrieval. Developing an understanding of where,
when, and how to use this data persistence approach is important to effective
Android application development.

85

(03 Data Persistence and Multimedia

Implement Data Persistence and Access

A. SharedPreferences

SharedPreferences used for a limited set of data that represent user
choices about the way they want the app configured.
SharedPreferences allows user to store and retrieve key / values pairs
of primitive data types. User can use SharedPreferences to store
primitive data: booleans, floats, ints, longs, and strings.

Preferences are implemented through use of the SharedPreferences
class. A SharedPreferences object can be used to store primitive data
(e.g: integers and strings) in a key/value pair. Each value has its own
key for storage and retrieval of that data. SharedPreferences are stored
in private memory to the app and will persist as long as the app remains
installed on the device. App upgrades will not impact the values stored
with SharedPreferences.

There are two (2) main modes for accessing SharedPreferences.

1. getSharedPreferences (String name, int mode)

e Used when there is more than one set of preferences for
an app identified by name that will be passed in the first
parameter or user want the preferences available to any
Activity in the app.

getSharedPreferences("String preference name", int mode);

2. getPreferences (int mode)
e |If user need a set of preferences only for a single Activity.

getPreferences(int mode);

With each of these methods, user need to set an access mode. Using O
(zero) makes the preferences private to the app. Data is stored by using
a method appropriate to the value being saved (e.g: putBoolean or
putint) and supplying a string that will be the key for future access to
that value. Likewise, to read SharedPreferences values use the methods
as getBoolean() and getint().

86

(03 Data Persistence and Multimedia

Sample code: Example of persistence with SharedPrefereces

public static final String PREFS_NAME = "MyPrefsFile";
private boolean test;

private void store(){
SharedPreferences settings = getSharedPreferences(PREFS_NAME, 0);
SharedPreferences.Editor editor = settings.edit();
editor.putBoolean("test", test);

editor.commit();

}

private void recover(){
SharedPreferences settings = getSharedPreferences(PREFS_NAME, ©);
test = settings.getBoolean("test", false);

B. FlatFiles

Files are written and read as a stream of bytes. As to the Android
system, a file is one thing. It does not have parts, such as different
objects, within it. The advantage of files- data is stored efficiently and
doesn't have to worry about what data is stored within the stream.
Meanwhile, the disadvantage of files- depends to the developer to code
the reading & writing of the file so that the data can be used
appropriately when needed. Standard flat file input/ output, useful for
backing up data and transmitting to other users.

Files can be written to either internal (private to the app, will persist
as long as the app is installed on the device) or external storage (such
as an SD card, accessible (including being able to modify and delete).
Files are written and read from storage using the FilelnputStream and
FileOutputStream.

1. FilelnputStream
e Example of simple persistence with FilelnputStream:

FileInputStream fin = openFilelInput("mytextfile.txt");

int c;
String temp="";
while((c = fin.read()) != -1){
temp = temp + Character.toString((char)c);
}
fin.close();

87

(03 Data Persistence and Multimedia

e The method openFilelnput() is used to open a file and read
it. It returns an instance of FilelnputStream. After that,
method read one character at a time from the file and then
print it.

2. FileOutputStream
e Example of simple persistence with FileOutputStream:

String FILENAME = "hello_file";
String string = "hello world!";

FileOutputStream fos = openFileOutput(FILENAME, Context.MODE_PRIVATE);
fos.write(string.getBytes());
fos.close();

e The method openFileOutput() is used to create and save a
file, and returns an instance of FileOutputStream:

C. sQlite Databases

A database is very useful for any large or small system, unless system
deals only with simple data, without using a bank to store information.
The Android uses the SQLite database that is open-source and widely
used in popular applications.

SQlite provides capabilities for retrieval and manipulation of the stored
data through the use of queries written in Structured Query Language
(SQL). Data stored in a SQLite database is private to the app and will
persist as long as the app is installed on the device. An app may create
and use multiple databases, and each database can have many tables,
making data storage via SQLite both extensive and flexible.

88

(03 Data Persistence and Multimedia

Construct and Leverage Relational Database on
Devices Using SQlite

1. Use constants for table names and database creation query
e Define constants for database and table names

private static final String DATABASE_NAME = "my_sqlite_db";

private static final String TABLE_NAME = "student";

2. Creating a SQLite Database Instance Using the Application Context
e use the openOrCreateDatabase() method.

import android.content.Context;
import android.database.sqlite.SQLiteDatabase;

SQLiteDatabase mDB = openOrCreateDatabase (DATABASE_NAME,
Context.MODE_PRIVATE,null);

3. Configuring the SQLite Database Properties
e Some important database configuration options include version
and locale features.

import java.util.Locale;
mdb.setLocale(Locale.getDefault());
mdb.setVersion(1);

4. Creating Tables and Other SQLite Schema Objects
mdb.execSQL("CREATE TABLE IF NOT EXISTS " + TABLE_NAME

+ " (rollno VACHAR, name VARCHAR, marks VARCHAR);");

5. Creating, Updating and Deleting Database Records

e |nsert Records — used to insert a new row in the database

mdb.execSQL("INSERT INTO " + TABLE _NAME + " VALUES ('"
+ Rollno.getText() + "', ""
+ Name.getText() + "', ""
+ Marks.getText() + "');");

89

(03 Data Persistence and Multimedia

e Update Records - used to update the fields of an existing row

mdb.execSQL("UPDATE " + TABLE_NAME
+ " SET name = '" + Name.getText()
+ "', marks = '" + Marks.getText()
+ "' WHERE rollno = '" + Rollno.getText() + "'");

e Delete Records - used to delete the existing rows

mdb.execSQL("DELETE FROM student WHERE rollno = ""
+ Rollno.getText() + "'");

6. Closing a SQLite Database

db.close();

90

(03 Data Persistence and Multimedia

Sharing Data in Android Using Content Provider

The Content Providers are a very
important component that serves for
the purpose of a relational database

Business [

Layer

Applications]

------------- F-- Blinder ---4---- Ashmem --F-=-------

to store application data. The role of N
the Content Provider in the android Layer [Content Provider]
system is like a central repository | = ----oeeeeeiiees Read--=--4--- Write ===========x=

where application data is stored, and

this makes it facilitates other Data q".ﬁ‘t -
. . . ayer ..-’ Files
applications to access and modify L D174 m
data securely based on user needs. Internet
The Android system allows Content

Provider to store application data in
several ways.

Figure 3-69: Content Provider

Users can manage to store the application data like images, audios, videos,
and personal contact information by storing it in a SQLite Database, in a file,
or even on a network. In oder to share the data, Content Providers have
certain permissions that are used to grant or restrict other applications’ rights
to interfere with the data.

Content URI

Content URI (Uniform Resource Identifier) is the key concept of Content
Providers. To access the data from a content provider, URI is used as a
guery string. The Content URI is essentially the address of where to find
the data within the provider. A content URI always starts with content://
and then includes the authority of a provider which is the provider’s
symbolic name.

Structure of a Content URI consists of four (4) parts:
content://authority/path/ID

e content:// all the content provider URIs should start with this value

e authority represents the domain, and for content providers
customarily ends in .provider

e path is the path to the data

e ID uniquely identifies the data set to search

91

(03 Data Persistence and Multimedia

Operations in Content Provider

Each android application can be a Content Provider. When Content
Provider is accessed, the ContentResolver object will be used in the
application context. The ContentResolver communicates with the
provider, an instance of the class that implements Content Provider. The
ContentResolver object receives data request from the client and
perform the request action on behalf of the client and deliver the results
back to the client.

This ContentResolver object has methods - insert(), update(), query()
and delete() that call identically-named methods in the provider object,
an instance of one of the concrete subclasses of Content Provider. The
methods provide the basic "CRUD" (namely Create, Read, Update, and
Delete) functions of persistent storage.

Create: Operation to create data in a content provider
Read: Used to fetch data from a content provider
Update: To modify existing data

Delete: To remove existing data from the storage

A WN R

Example: Android Content Provider, Content URI and ContentResolver

Android Content Provider is mainly providers. This is something like
used for data sharing between SQLlite database operation.

different applications. It provides a
complete set of mechanisms to allow
one program to access data in
another program, and also to ensure

the security of the data being funciold Phons

Contacts

accessed. Content URI is a unique _ , Android Media
" 3 ol Library

resource identifier that Content
Provider app provides for client app
to access it’s shared data.

To get data from a Content Provider,
a ContentResolver needs to be used
in the application. Then the
ContentResolver's method can be
used to insert, delete, update and
gquery data shared by other content

Figure 3-70: Android content provider

92

(03 Data Persistence and Multimedia

3.2

Apply Graphics and
Animation Android

Graphics and animations help make Android apps interesting and fun to use;
however, it is important to remember that some interactions occur through
screen readers, alternative input devices, or with assisted zoom. Also, some
interactions may occur without audio capabilities.

Applications are more useful in these situations if they are designed with
accessibility in mind: providing hints and navigational assistance in the user
interface, and ensuring there is text or description content for the Ul pictorial
elements.

Multiple Screens Density and Size

For applications, the Android system provides a consistent development
environment across devices and handles most of the work to adjust each
application's user interface to the screen on which it is displayed. At the same
time, the system provides APIs that can control application's Ul for specific
screen sizes and densities.

A. Terms and Concepts

1. Screen Size
Actual physical size, measured as the screen's diagonal. For
simplicity, Android groups all actual screen sizes into four
generalized sizes: small, normal, large, and extra-large.

2. Screen Density
The quantity of pixels within a physical area of the screen; usually
referred to as dpi (dots per inch). For example, a "low" density
screen has fewer pixels within a given physical area, compared to
a "normal" or "high" density screen.

93

(03 Data Persistence and Multimedia

For simplicity, Android groups all actual screen densities into six
generalized densities: low, medium, high, extra-high, extra-
extra-high, and extra-extra-extra-high.

3. Orientation
The orientation of the screen from the user's point of view. This
is either landscape or portrait, meaning that the screen's aspect
ratio is either wide or tall, respectively. Be aware that not only
do different devices operate in different orientations by default,
but the orientation can change at runtime when the user rotates
the device.

4. Resolution
The total number of physical pixels on a screen. When adding
support for multiple screens, applications do not work directly
with resolution; applications should be concerned only with
screen size and density, as specified by the generalized size and
density groups.

5. Density-independent pixel (dp)

A virtual pixel unit that user should use when defining Ul layout,
to express layout dimensions or position in a density-
independent way. The density-independent pixel is equivalent to
one physical pixel on a 160 dpi screen, which is the baseline
density assumed by the system for a "medium" density screen. At
runtime, the system transparently handles any scaling of the dp
units, as necessary, based on the actual density of the screen in
use. The conversion of dp units to screen pixels is simple: px=dp*
(dpi / 160).

For example, on a 240 dpi screen, 1 dp equals 1.5 physical pixels.
You should always use dp units when defining your application's
Ul, to ensure proper display of your Ul on screens with different
densities.

94

(03 Data Persistence and Multimedia

B. Range of Screens Supported

Starting with Android 1.6 (APl Level 4), Android provides support for
multiple screen sizes and densities, reflecting the many different screen
configurations that a device may have. To make it easier to design a
user interface for multiple screens, Android divides the actual screen
size and density range into:

1. A set of four (4) generalized sizes:

small, normal, large, and xlarge

2. A set of six (6) generalized densities:

Idpi (low) ~120dpi, mdpi (medium) ~160dpi, hdpi high) ~240dpi,
xhdpi (extra-high) ~320dpi, xxhdpi (extra-extra-high) ~480dpi
and xxxhdpi (extra-extra-extra-high) ~640dpi

C. How to Support Multiple Screen

Explicitly declare in the manifest which screen sizes your application
supports.

Provide different layouts for different screen sizes.

Provide different bitmap drawablesfor different screen densities

D. The Best Practice to Ensure Compatibility Screen Display

w

. Use wrap_content, fill_parent or dp units when specifying

dimensions in an XML layout file

Do not use hard coded pixel values in your application code

Do not use Absolutelayout (it's deprecated)

Supply alternative bitmap drawables for different screen densities

95

(03 Data Persistence and Multimedia

Animation Types and Capabilities

Animation is the process of creating motion and changing shape of a specific
view. Animation in android can be done in various ways. Animation in Android
is generally used to give the Ul a rich look and feel.

Animation basically consists of three (3) types as follows::
A. Property Animation

Introduced in Android 3.0 (APl level 11), an extensible and flexible
system that can be used to animate the properties of any object, not
just View objects. This flexibility allows animations to be encapsulated
in distinct classes that will make code sharing easier. Property
Animation can be used to add any animation in the CheckBox,
RadioButtons, and widgets other than any view.

The android.animation provides classes which handle property
animation. The Property Animation system lets user define the
following characteristics of an animation:

e Duration: User can specify the duration of an animation. The
default length is 300 ms.

e Time interpolation: User can specify how property values are
calculated as a function of the elapsed animation time.

e Repeat count and behavior: User can specify whether or not to
have an animation repeat when reaching the end of the period
and how many times to repeat the animation. User can also
specify whether user want the animation to play back in reverse.
Setting it to reverse plays the animation forwards then backwards
repeatedly, until the number of repeats is reached.

e Animator sets: User can group animations into logical sets that
play together or sequentially or after specified delays.

e Frame refresh delay: User can specify how often to refresh
frames of animation. The default is set to refresh every 10 ms,
but the speed in which application can refresh frames s
ultimately dependent on how busy the system is overall and how
fast the system can service the underlying timer.

96

(03 Data Persistence and Multimedia

B. View Animation

View Animation is an original animation API's in Android, also called as
Tween Animation and available in all versions of Android. This API is
limited in that it will only work with View objects and can only perform
simple transformations on those Views. View animations are typically
defined in XML files found in the /Resources/anim folder. The
android.view.animation provides classes which handle view animation.

An example of View Animation can be used, such as : if we have a
TextView object, we can move, rotate, grow, or shrink the text. If it has
a background image, the background image will be transformed along
with the text.

C. Drawable Animation

Drawable Animation is the simplest animation API, used if user want to
animate one image over another. The simple way to understand is to
animate drawable is to load a series of drawable one after another to
create an animation. A simple example of Drawable Animation can be
seen in many apps Splash screen on apps logo animation.

The important methods of Animation
e startAnimation() - This method will start the animation

e clearAnimation() - This method will clear the animation running on a
specific view

97

(03 Data Persistence and Multimedia

TUTORIAL: Graphics and Animation Capabilities to an Application

Learning Outcomes:
By the end of this tutorial, you should be able to add animations to ImageView.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:
A. Create New Project

1. Open Android Studio and create new project. Name it as Android_Animation.
Click Finish.

B. Working with the activity_main.xml
2. Create ImageView along with Buttons that will add animation to the view as

shown below.

919 & =

Android_Animation

Hello World!

BLINK ROTATE
FADE MOVE

Figure 3-71: Animation interface

98

(03 Data Persistence and Multimedia

C. Create 6 different types of animation for ImageView

3. To create new animations, create a new directory for storing all animations.
Navigate to the app > res > . Right-click on res >> New >> Directory >>
Name directory as “anim”.

4. Inside this directory, create animations. For creating a new anim right click on the
anim directory >> Animation Resource file and give the name to file.

5. Below is the code snippet for six (6) different animations.

blink.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">

<alpha android:fromAlpha="90.0"

</set>

rotate.xml

android:
android:
android:

android
android

toAlpha="1.0"

interpolator="@android:anim/accelerate_interpolator”

duration="500"
repeatMode="reverse"
repeatCount="infinite"/>

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android

<rotate

android:
android:
android:
:pivotY="50%"
android:

android

<rotate

</set>

fade.xml

android

android
android

duration="6000"
fromDegrees="0"
pivotX="50%"

toDegrees="360" />

:duration="6000"
android:
android:
:pivotyY="50%"

:startOffset="5000"
android:

fromDegrees="360"
pivotX="50%"

toDegrees="0" />

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/accelerate_interpolator" >

<alpha

.com/apk/res/android" >

99

(03 Data Persistence and Multimedia

android:duration="1000"
android:fromAlpha="0"
android:toAlpha="1" />

<alpha
android:duration="1000"
android:fromAlpha="1"
android:startOffset="2000"
android:toAlpha="0" />

</set>

move.xml
<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:interpolator="@android:anim/linear_interpolator"
android:fillAfter="true" >

<translate
android:fromXDelta="0%p"
android:toXDelta="75%p"
android:duration="700" />

</set>

slide.xml
<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:fillAfter="true" >

<scale
android:duration="500"
android:fromXScale="1.0"
android:fromYScale="1.0"
android:interpolator="@android:anim/linear_interpolator"
android:toXScale="1.0"
android:toYScale="0.0" />

</set>

zoom.xml
<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android:fillAfter="true" >

<scale xmlns:android="http://schemas.android.com/apk/res/android"
android:fromXScale="0.5"
android:toXScale="3.0"
android:fromYScale="0.5"
android:toYScale="3.0"
android:duration="5000"
android:pivotX="50%"
android:pivotY="50%" >
</scale>

100

(03 Data Persistence and Multimedia
L

<scale xmlns:android="http://schemas.android.com/apk/res/android"
android:startOffset="5000"
android:fromXScale="3.0"
android:toXScale="0.5"
android:fromYScale="3.0"
android:toYScale="0.5"
android:duration="5000"
android:pivotX="50%"
android:pivotY="50%" >
</scale>

</set>

D. Working with the MainActivity.java file

6. Add animation to the ImageView by clicking a specific Button.

public class MainActivity extends AppCompatActivity {

ImageView imageView;
Button blinkBTN, rotateBTN, fadeBTN, moveBTN, slideBTN, zoomBTN;

@override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

imageView = findViewById(R.id.imgView);
blinkBTN = findViewById(R.id.btnBLink);
rotateBTN = findViewById(R.id.btnRotate);
fadeBTN = findViewById(R.id.btnFade);
moveBTN = findViewById(R.id.btnMove);
slideBTN = findViewById(R.id.btnSlide);
zoomBTN = findViewById(R.id.btnZoom);

blinkBTN.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
// To add blink animation
Animation animation =
AnimationUtils. loadAnimation(getApplicationContext(),
R.anim.bl1ink);
imageView.startAnimation(animation);
}
1

rotateBTN.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
// To add rotate animation
Animation animation =
AnimationUtils. loadAnimation(getApplicationContext(),
R.anim.rotate);

101

(03 Data Persistence and Multimedia
L

imageView.startAnimation(animation);

}
1
fadeBTN.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
// To add fade animation
Animation animation =
AnimationUtils. loadAnimation(getApplicationContext(),
R.anim. fade);
imageView.startAnimation(animation);
}
s

moveBTN.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
// To add move animation
Animation animation =
AnimationUtils. loadAnimation(getApplicationContext(),
R.anim.move);
imageView.startAnimation(animation);

}
1
slideBTN.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
// To add slide animation
Animation animation =
AnimationUtils.loadAnimation(getApplicationContext(),
R.anim.sl1ide);
imageView.startAnimation(animation);
}
1

zoomBTN.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
// To add zoom animation
Animation animation =
AnimationUtils. loadAnimation(getApplicationContext(),
R.anim.zoom);
imageView.startAnimation(animation);

})s

E. Output

7. Now, run your program. You will see animation output on the emulator or device.

102

(03 Data Persistence and Multimedia

3.3

Apply Multimedia
Component

Many modern “smart devices” have built-in cameras to capture and display
still images, video, and sophisticated music playback abilities. Basic
smartphone has at least one camera, sometimes two for the front-facing
cameras used for video chat and self-portraits (selfies).

As an application developer, we are free to make use of any media codec that
is available on any Android-powered device, including those provided by the
Android platform and those that are device-specific. However, it is a best
practice to use media encoding profiles that are device-agnostic.

A. Audio Capture
The Android multimedia framework includes support for capturing and
encoding a variety of common audio formats, so that we can easily
integrate audio into applications. We can record audio using the
MediaRecorder APIs if supported by the device hardware.

B. Camera

The Android framework supports capturing images and video through
the android.hardware.camera2 APl or camera Intent.

103

(03 Data Persistence and Multimedia

Media Container and Codecs

The table below describes the media format support built into the Android
platform. Note that any given mobile device may provide support for
additional formats or file types not listed in the table.

Type Format / Codec

AAC LC

HE-AACv1 (AAC+)
HE-AACv2 (enhanced
AAC+)

AAC ELD (enhanced low
delay AAC)

AMR-NB
Audi AMR-WB
udio t ac

MP3

MIDI

Vorbis

PCM/WAVE
JPEG

GIF

PNG

BMP

WebP

Image

H.263

H.264 AVC
Video

MPEG-4 SP
VP8

Supported File Type(s) / Container
Formats

e 3GPP (.3gp)

e MPEG-4 (.mp4, .m4a)

e ADTS raw AAC (.aac, decode in

Android 3.1+, encode in Android

4.0+, ADIF not supported)

e MPEG-TS (.ts, not seekable,

Android 3.0+)

3GPP (.3gp)

3GPP (.3gp)

FLAC (.flac) only

MP3 (.mp3)

e Type 0 and 1 (.mid, .xmf, .mxmf)

e RTTTL/RTX (.rtttl, .rtx)

e OTA (.ota)

e iMelody (.imy)

* Ogg (.ogg)

e Matroska (.mkv, Android 4.0+)

WAVE (.wav)

JPEG (.jpg)

GIF (.gif)

PNG (.png)

BMP (.bmp)

WebP (.webp)

e 3GPP (.3gp)

e MPEG-4 (.mp4)

e 3GPP (.3gp)

e MPEG-4 (.mp4)

e MPEG-TS (.ts, AAC audio only, not

seekable, Android 3.0+)

3GPP (.3gp)

e WebM (.webm)

e Matroska (.mkv, Android 4.0+)

Table 3-8: Media container and codecs

104

(03 Data Persistence and Multimedia

TUTORIAL: Implement Media

Learning Outcomes:
By the end of this tutorial, you should be able to implement VideoView.

Hardware/Software:
Computer, Android Studio and latest SDK version.

Procedure:

A. Create New Project

1. Open Android Studio and create new project. Name it as Android_Media. Click
Finish.

B. Working with the activity_main.xml

2. Create VideoView along with Button that will play video to the view as shown

ﬁ2¢-

below.

Android_Media

Hello World!

Figure 3-72: Media interface

C. Create raw folder

3. To create new media, create a new directory for storing media. Navigate to
the app > res > . Right-click on res >> New >> Folder >> Res Folder >>
Configure Component.

4. Tick checkbox “Change Folder
Location”. Name New Folder
Location as “src/main/res/raw”. S TIE IE
Drag mp4 video into raw folder. src/main/res/ raw

[Change Folder Location

Figure 3-73: Create raw folder

105

(03 Data Persistence and Multimedia
L

D. Working with the MainActivity.java file

5. Add animation to the videoview by clicking a specific Button.

package com.example.android_media;

import androidx.appcompat.app.AppCompatActivity;
import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.MediaController;

import android.widget.VideoView;

public class MainActivity extends AppCompatActivity {

VideoView videoview;
Button btnPLAY;
MediaController mediac;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

// initiate components

btnPLAY = (Button) findViewById(R.id.btnPlay);
videoview = (VideoView) findViewById(R.id.videoView);
mediac = new MediaController(this);

}

public void videoplay(View view){

String VideoURL = "android.resource://com.example.android_media/"
+ R.raw.tech;

Uri uri = Uri.parse(VideoURL);
videoview.setVideoURI(uri);
videoview.setMediaController(mediac);
mediac.setAnchorView(videoview);
videoview.start();

} | 418 & -

Android_Media

E. Output Hello World!

6. Now, run your program. You will see media output
on the emulator or device.

Figure 3-74: Media output

106

- PUBLISHING
= ANDROID
APPLICATION

Test Android Apllication
Components

Publish Application

04 Publishing Android Application

4.1

Test Android
oplication Components

Fundamentals of Testing

Users interact with developed mobile app on a variety of levels, from pressing
a button to downloading information to their devices. Therefore, as a mobile
developer should test a variety of use cases and interactions as iteratively
developing app.

As mobile app expands, there are a number of activity features that need to
be considered such as fetching data from a server, interacting with the
device's sensors, accessing local storage, or rendering complex user
interfaces. The versatility of mobile app demands a comprehensive testing
strategy.

View app as a series of modules

To make code easier to test, develop code in terms of modules, where
each module represents a specific task that users complete within app.
This perspective differs the stack-based view of an mobile app that
typically contains layers representing the Ul, business logic, and data.

It's important to set well-defined boundaries around each module, and
to create new modules as app grows in scale and complexity. Each
module should have only one area of focus, and the APIs that allow
communication between modules must be consistent. To make it easier
and faster to test the interactions between these modules, consider
creating a fake module implementation. In testing, the real
implementation of one module can call the fake implementation of the
other module.

108

04 Publishing Android Application

However, create a new module, don't be too dogmatic to make it
complete right away. It doesn't matter if a particular module doesn't
have one or more application stack layers.

Running test on different types of devices
When running a test on a device, you can choose between the following
types:
1. Real device
Real devices offer the highest fidelity but also require the most
time to run tests.

2. Virtual device (such as the emulator in Android Studio)
Virtual devices offer a balance of fidelity and speed. When using
avirtual devices for testing, use snapshots to minimize setup time
in between tests.

3. Simulated device (such as Roboletric)
Simulated devices, on the other hand, provide better test speeds
with lower fidelity costs. However, platform improvements in
binary sources and realistic compilers allow simulation devices to
produce more realistic results.

Write tests
Once the test environment is configured, it is time to write a test that
evaluates the functionality of the mobile application. This section
describes how to write small, medium and large tests.
1. Small Test
Small tests are unit tests that validate mobile app's behavior one
class at a time.

2. Medium Test
Medium tests are integration tests that validate either
interactions between levels of the stack within a module, or
interactions between related modules.

3. Large Tests

Large tests are end-to-end tests that validate journeys spanning
multiple modules of mobile app.

109

04 Publishing Android Application

While working on the pyramid, from small tests to large tests, each test
increases in fidelity but also increases in execution time and effort to
maintain and debug. Therefore, should write more unit tests than
integration tests, and more integration tests than end-to-end tests.
Although the test portion for each category can vary based on the
application use case, it generally recommends the following division
between categories: 70 percent small, 20 percent medium, and 10
percent large.

Ul Tests
(Large Test)

SN S

e Fidelity

e Execution time
e Maintenance

e Debugging

Integration Tests
(Medium Tests)

Unit Tests
(Small Tests)

v
< >
of test

Figure 4-75: The Testing Pyramid, showing the three categories of tests that
should include in mobile app's test suite

The small test written must be a highly focused unit test that
thoroughly validates the functionality and contracts of each class within
mobile app. In addition to testing each mobile application unit by
running small tests, it must validate app's behavior from the module
level. To do so, write a medium test, which is an integration test that
validates the collaboration and interaction of a group of units.

While it is important to test each class and module in a mobile
application separately, it is equally important to validate an end-to-end
workflow that guides users through multiple modules and features. This
type of testing form unavoidable difficulties in code, but can minimize
this effect by validating an app that's as close to the actual, finished
product as possible.

110

04 Publishing Android Application

If the mobile app is small enough, it may only require only one suite of
large tests to evaluate the app’s functionality as a whole. Otherwise,
should divide the large test suite by team ownership, functional
vertical, or user goals. Typically, it is better to test an app on an
emulated device or a cloud-based service like Firebase Test Lab, rather
than on a physical device, as it can test multiple combinations of screen
sizes and hardware configurations more easily and quickly.

Android JUnit Framework for Unit Testing

Install the dependencies
To use JUnit tests for Android application, add a dependency to Gradle
build file.

dependencies {

testImplementation 'junit:junit:4.+'
}

JUnit is a Unit Testing Framework for Java Applications. It is an
automation framework for Unit as well as Ul Testing. It contains
annotations such as @Test, @Before, @After etc. Unit tests are
generally written before writing the actual application.

Unit Testing is done to ensure that developer would be unable to write
low quality / incorrect code. It makes sense to write a Unit Test before
writing the actual app as there will be no bias towards test success,
write the test first and the actual code should adhere to the design
guidelines laid out by the test.

JUnit methods
There are several methods provided by JUnit Framework.

1. assertThat () : create custom assertions and not just true and false
values. It takes in 3 arguments. A reason/description, input value to
be checked, expected actual value.

111

04 Publishing Android Application

2. is () : returns a Matcher to match the source object to the one
provided as the parameter of method is().

3. equalTo () : checks for equality between the expected and actual
value.

4. when () : a very powerful method which takes in a method call as its
parameter. It takes in the method call which is to be
stubbed/duplicated. Once the method stub is executed, method
then() is called.

5. thenReturn () : called after the method stub provided in when()

method has finished running. It is used to return the result of the
method, if it is not void.

Android Unit Test Tutorial

1. Whenever an android project is developed, there are three java
packages visible.

Android « B - O —

manifests

we AndroidManifestaoml

com.example.android_media
com.example.android_media (androidTest)

com.example.android_media (test)

Figure 4-76: Java pakages
There is a main package (the first one), and inside this package there is all application’s
code. Next, there are two more packages that can be differentiate these packages

with shown hintandroidTest and test.

2. Now go to app-level build.gradle file and see the dependencies block.

112

04

P TN

Publishing Android Application

dependencies {

implementation 'androidx.appcompat:appcompat:1.3.1"'

implementation 'com.google.android.material:material:1.4.0"

implementation 'androidx.constraintlayout:constraintlayout:2.1.0'
B

// Unit testing dependencies

testImplementation 'junit:junit:4.+'

androidTestImplementation 'androidx.test.ext:junit:1.1.3"’

androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'

Y

ﬁ———l

}
Figure 4-77: build.gradle

You can see there are testimplementation and
androidTestImplementation. testimplementation is a library available
inside test package. And the same way if you want the library to be
available inside android Test package, vyou need to | use
androidTestiImplementation. Now, JUnit Testing Framework is added
by default here. Each time a project is developed, it will be added by
default. JUnit will be used for unit test code.

113

04 Publishing Android Application

4.2

Publish Application

Prepare an application for publishing

Publishing is the general process that makes Android applications available to
users. Various distribution opportunities are available for Android app
developers. Many developers choose to sell their apps through mobile
marketplaces such as Google Play. Others develop their own distribution
mechanisms, for example, they may sell their apps from websites.

! P;::ﬁ;t‘]'::r Configure, build, and test your |
| application in release mode. '

! for release PP |

! |
— | !
I

I A |

| I

I

: Release your Publicize, sell, and distribute :

— application your application to users. !
| L .‘I

Figure 4-78: Publishing application

There are two (2) main tasks of publishing an Android application:

1. Prepare the application for release
During the preparation step, build a release version of application,
which users can download and install on their Android-powered
devices.

2. Release the application to users

During the release step, publicize, sell, and distribute the release
version of application to users.

114

04 Publishing Android Application

Preparing an application for publish is a multi-step process that involves the
following tasks :

1. Configure the application to be released

Remove call Logs and android:debuggable attributes from the
manifest file. Provide values for the android attributes:versionCode
and android:versionName, located in the <manifest> element.
Configure some other settings to meet Google Play requirements or
accommodate whatever method is used to release the app. Can also
use the release build type to set build settings for the published
version of the application.

2. Building and signing a release version of application
Use the Gradle build file with the release build type to build and sign
the release version of the application.

3. Testing the release version of application
Before distributing the app, test the release version thoroughly on
at least one target mobile device and one target tablet device.

4. Updating application resources for release
Ensure that all application resources such as multimedia and
graphics files are updated and included with the application or
staged on the correct production server.

5. Preparing remote servers and services that application depends on

If the application depends on an external server or service, make
sure it is secure and ready for production.

115

04

Publishing Android Application

Configure the application version and API
requirements

During the publishing preparation steps, developer build a release version of
the app, which users can download and install on their Android-powered
devices. Versions are an important component of application improvement
and maintenance strategies. Version is important because:

1.

3.

Users need to have specific information about the version of the
application installed on their device and the upgraded version available
for installation.

. Other apps - including other applications that published together as a

suite, need to query the system for app's version, to determine
compatibility and identify dependencies.

The service that will be used to publish the application may also need
to request the type of application for that version, so that they can
display that version to the user. Publishing services may also need to
check application versions to determine compatibility and establish an
upgrade / drop relationship.

The Android system uses app version information to protect against
downgrades. The Android system enforces system version compatibility as
specified by the minSdkVersion setting in the build file. This setting allows
the application to specify the appropriate minimum system API.

116

04 Publishing Android Application

Set application version information
To define the version information for app, set values for the version
settings in the Gradle build files. These values are then merged into
app's manifest file during the build process. Two settings are available,
and you should always define values for both of them: versionCode and
versionName.

Define default values for these settings by including them in the
defaultConfig{} block, nested inside the android{} block of module's
build.gradle file. Override these default values for different versions of
app by defining separate values for individual build types or product
flavors.

Set API level requirements
If app requires a specific minimum version of the Android platform,
specify that version requirement as APl level settings in the app's
build.gradle file. During the build process, these settings are merged
into app's manifest file. Specifying API level requirements ensures that
app can only be installed on devices that are running a compatible
version of the Android platform.

117

04 Publishing Android Application

Package, sign and optimize the application

Android requires that all APKs be digitally signed with a certificate before they

are installed on a device or updated. Following is the steps need to sign and
publish a new app to Google Play:

1. Generate an upload key and keystore

You can generate one using Android Studio as follows:

Generate Signed Bundle or APK

Android App Bundle

® Smaller download size
® On-demand app features
® Asset-only modules

Leam more
A ———
O APk 1

Build a signed APK that you can deploy to a device

Generate a signed app bundle for upload to app stores for the following benefits:

Generate Signed Bundle or APK

X
Module Al
Key store path
-—— -
Create new... IChUDsEaisting‘.‘
[Eep——— |
Key store password
Key alias Key store path:
Password:
Key password
Key
Remember passwords Alias: key0
Password:
peiows | [| oy

Certificate

First and Last Name:
Organizational Unit:
Organization:

City or Locality:
State or Province:

Country Code (XX):

Figure 4-79: Create a new upload key and keystore in Android Studio

Bundle or APK and click Next.

Below the field for Key store path, click Create new.

In the menu bar, click Build > Generate Signed Bundle/APK.

In the Generate Signed Bundle or APK dialog, select Android App

118

https://developer.android.com/studio/publish/app-signing

04

Publishing Android Application

e On the New Key Store window, provide the information for

keystore and key.

Key store

Key store path: Select the location where keystore should be
created.
Password: Create and confirm a secure password for keystore.

Key

Alias: Enter an identifying name for key.

Password: Create and confirm a secure password for key. This
should be different from the password chose for keystore.
Validity (years): Set the length of time in years that key will
be valid. The key should be valid for at least 25 years, so you
can sign app updates with the same key through the lifespan
of app.

Certificate: information about vyourself for
certificate. This information is not displayed in app, but is
included in your certificate as part of the APK.

Enter some

Once complete the form, click OK.

2. Sign app with upload key
To sign app using Android Studio, and export an existing app signing
key, follow these steps:

e Click Build > Generate
Signed Bundle/APK.

e In the Generate Signed
Bundle or APK dialog,
select either Android
App Bundle or APK and
click Next.

A Y

g ———————

[t e Bl £1 AFK *

L5

N——————_l

\

Figure 4-80: Generate signed bundle

119

04 Publishing Android Application

Select a module from the drop down.

Specify the path to keystore, the alias for key, and enter the
passwords for both. Click Next.

Select a destination folder for signed app, select the build type

(free/paid), choose the product flavor(s) if applicable. Click
Finish.

3. Optin to Play App Signing
To configure signing for an app that has not yet been published to
Google Play, proceed as follows:

Sign in to your Play Console.

Follow the steps to prepare & roll out release to create a new
release.

After you choose a release track, configure app signing under the
App Integrity section. The key use to sign first release becomes
upload key, and should use it to sign future releases.

Upload
key

Developer — m —> Google — m —> User

App signed with App signed with
upload key app signing key

App signing
key

Figure 4-81: Signing an app with Play App Signing

4. Upload your app to Google Play
After build and sign the release version of app, the next step is to
upload it to Google Play to inspect, test, and publish app. Google Play
supports compressed app downloads of only 150 MB or less.

& Alapphications

Bame services

[}
[+
A plerts
o

Sattings

Downlead reparts

B Google Play Conscle = Al applications

- . rating /) \
& Agpname Active Installs @ Total # Last update Status

Figure 4-82: Publish an app on Play Store

120

04 Publishing Android Application

5. Prepare & roll out release of your app
Android apps can be released in several ways. Usually, apps are released
through an application marketplace such as Google Play, but can also
release apps on their own websites or by sending apps directly to users.

0 App Stores Release on Sending apps

(Android / 10S apps) own websites directly to users

Figure 4-83: Release app

121

https://support.google.com/googleplay/android-developer/answer/9859348?visit_id=637453307112360025-1360415735&rd=1

04 Publishing Android Application

Distribute the application on online Application
Stores

App distribution is the process of releasing an app to a broad set of users in
order to promote app engagement and usage. Often, app marketers will seek
out app distribution channels and platforms as a way to advertise their app -
either organically or paid.

(oo]
ST,

Nm———T

Android App Stores 10S App Stores

Figure 4-84: Distribute app

1. Pre-Launch
Test app potential with an early release. Introduce a few core features
of the app and use popular channels with strong communities, to gain
interest and attract people. This helps growing user base and get the
attention of investors. With an early release, fascinate a few early
adopters before start with creating the brand-new framework.

2. Optimize App
Optimize app for app stores just like optimize a website for a search
engine. Find the relevant keywords with the help of effective SEO tools
and make sure add those keywords to the app title and description.

3. Find the Niche
To help app stand out, differentiate it with the other apps available in
the market. There are two ways of doing this — release such features
that no other app in the app store has or find own niche.

122

04

Publishing Android Application

4. Craft App Presence on App Store

‘The First Impression is the Last Impression’. When users find app in
their searches and stumble upon it, get a few seconds to impress them.
Make sure app’s home page is loaded with well-crafted screenshots and
has engaging content. It should highlight the effective features and
other factors of app that can help users understand app better. If app
is paid, offer users a basic version with a free download and limited
features.

Exclusive

Make sure uniquely promote app. Use the app marketing strategies that
help develop people’s interest and attract them to download app. There
are various effective ways to promote an app for free.

6. Leverage Social Presence

Social Media is one of the most powerful marketing tools available
online. Leverage social media presence to the optimum level. Provide
users with the social media integrations in the app so that they could
share their experiences and achievements among their social circle.
Offer reward points or coupon discounts for every referral share.

7. Develop User Interest

Release app for a few users first and have rest use the app through
referrals and invites. This makes users curious about app and helps get
the target audience by word of mouth marketing. Also, good reviews
from these users can help rank higher in App Store optimization.

123

References

1. lIversen,)., & Eierman, M. (2014). Learning Mobile App Development: A Hands-On

Guide to Building Apps with los and Android. Pearson Education.

2. Smyth, N. (2015). Android Studio Development Essentials: Android 6 Edition.

eBookFrenzy.

3. https://developer.android.com/guide/platform

4. https://www.javatpoint.com/android-life-cycle-of-activity

5. https://www.tutorialspoint.com/android/android overview.htm

6. https://www.tutlane.com/tutorial/android/android-framelayout-with-examples

7. https://www.geeksforgeeks.org/screen-orientations-in-android-with-examples/

8. https://www.c-sharpcorner.com/article/designing-user-interface-with-views-in-

android-application/

124

https://developer.android.com/guide/platform
https://www.javatpoint.com/android-life-cycle-of-activity
https://www.tutorialspoint.com/android/android_overview.htm
https://www.tutlane.com/tutorial/android/android-framelayout-with-examples
https://www.geeksforgeeks.org/screen-orientations-in-android-with-examples/
https://www.c-sharpcorner.com/article/designing-user-interface-with-views-in-android-application/
https://www.c-sharpcorner.com/article/designing-user-interface-with-views-in-android-application/

e ISBN 978-967-2099-69-7

9789672099697

