

RAMLAH BINTI MD ZAIN

MAZLINA BINTI MUSTAPHA

E - DATABASE DESIGN

Ramlah Binti Md Zain
Mazlina Binti Mustapha

Department of Information and
CommunicationTechnology

Sultan Mizan Zainal Abidin Polytechnic

EDITION 2021

First Publishing 2021

All rights reserved. No part of this document may
reproduced, stored in retrieval system or
transmitted in any form or by any means
(electronic, mechanical, photocopying recording
or otherwise) without the permission of the
copyright owner.

Published by:
Politeknik Sultan Mizan Zainal Abidin.
KM 08, Jalan Paka,
23000 Dungun, Terengganu Darul Iman.
Tel : 098400800
Fax : 09-8458781
www.psmza.edu.my

E-DATABASE DESIGN
EDITION 2021

e ISBN 978-967-2099-74-1

Ramlah Binti Md Zain
Mazlina Binti Mustapha

 In the name of Allah, The Most Gracious andIn the name of Allah, The Most Gracious andIn the name of Allah, The Most Gracious and
Merciful. All praise to Allah S.W.T for His greatMerciful. All praise to Allah S.W.T for His greatMerciful. All praise to Allah S.W.T for His great
loving kindness and blessing, this book isloving kindness and blessing, this book isloving kindness and blessing, this book is
successfully published.successfully published.successfully published.

E - Database Design book is designedE - Database Design book is designedE - Database Design book is designed
specifically for a first course in databases atspecifically for a first course in databases atspecifically for a first course in databases at
the junior or senior undergraduate, or firstthe junior or senior undergraduate, or firstthe junior or senior undergraduate, or first
year graduate level. The purpose in this text isyear graduate level. The purpose in this text isyear graduate level. The purpose in this text is
to present the fundamental concepts ofto present the fundamental concepts ofto present the fundamental concepts of
database design.These concepts includedatabase design.These concepts includedatabase design.These concepts include
aspects of database design like fundamental ofaspects of database design like fundamental ofaspects of database design like fundamental of
database, DBMS, relational data model, Entitydatabase, DBMS, relational data model, Entitydatabase, DBMS, relational data model, Entity
Relationship Model, normalization, structuredRelationship Model, normalization, structuredRelationship Model, normalization, structured
query language (SQL) and database transactionquery language (SQL) and database transactionquery language (SQL) and database transaction
management.management.management.

The authors would like to express deepestThe authors would like to express deepestThe authors would like to express deepest
appreciation to all those who have providedappreciation to all those who have providedappreciation to all those who have provided
the possibility in publishing this book especiallythe possibility in publishing this book especiallythe possibility in publishing this book especially
family, friends and colleaguesfamily, friends and colleaguesfamily, friends and colleagues
The book covers all the essential aspects ofThe book covers all the essential aspects ofThe book covers all the essential aspects of
database design based on those used indatabase design based on those used indatabase design based on those used in
existing commercial or experimental databaseexisting commercial or experimental databaseexisting commercial or experimental database
design. Hopefully students and lecturers candesign. Hopefully students and lecturers candesign. Hopefully students and lecturers can
use it for a learning process.use it for a learning process.use it for a learning process.

Thank you.Thank you.Thank you.

PR
EF
A
CE

PR
EF
A
CE

PR
EF
A
CE

This digital writing reviewing basicThis digital writing reviewing basicThis digital writing reviewing basic
concepts of databases and databaseconcepts of databases and databaseconcepts of databases and database
design, then turns to creating,design, then turns to creating,design, then turns to creating,
populating, and retrieving data usingpopulating, and retrieving data usingpopulating, and retrieving data using
SQL. Topics such as DatabaseSQL. Topics such as DatabaseSQL. Topics such as Database
Management System, the relationalManagement System, the relationalManagement System, the relational
data model, Entity Relationshipdata model, Entity Relationshipdata model, Entity Relationship
Diagram, normalization, data entities,Diagram, normalization, data entities,Diagram, normalization, data entities,
and database transactionand database transactionand database transaction
management are covered clearly andmanagement are covered clearly andmanagement are covered clearly and
concisely. This book provides theconcisely. This book provides theconcisely. This book provides the
conceptual and practical informationconceptual and practical informationconceptual and practical information
necessary to develop a databasenecessary to develop a databasenecessary to develop a database
design and management scheme thatdesign and management scheme thatdesign and management scheme that
ensures data accuracy and userensures data accuracy and userensures data accuracy and user
satisfaction while optimizingsatisfaction while optimizingsatisfaction while optimizing
performance.performance.performance.

A
BS
TR
A
CT

A
BS
TR
A
CT

A
BS
TR
A
CT

FUNDAMENTALS OF DATABASE MANAGEMENTFUNDAMENTALS OF DATABASE MANAGEMENTFUNDAMENTALS OF DATABASE MANAGEMENT
SYSTEMSYSTEMSYSTEM PAGE 1PAGE 1PAGE 1 |||
RELATIONAL DATA MODEL RELATIONAL DATA MODEL RELATIONAL DATA MODEL PAGE 22PAGE 22PAGE 22 | | |
ENTITY-RELATIONSHIP (ER) MODEL &ENTITY-RELATIONSHIP (ER) MODEL &ENTITY-RELATIONSHIP (ER) MODEL &
NORMALIZATIONNORMALIZATIONNORMALIZATION PAGE 34 PAGE 34 PAGE 34 | | |
STRUCTURED QUERY LANGUAGE (SQL)STRUCTURED QUERY LANGUAGE (SQL)STRUCTURED QUERY LANGUAGE (SQL) PAGE 60 PAGE 60 PAGE 60 |||
DATABASE TRANSACTION MANAGEMENT DATABASE TRANSACTION MANAGEMENT DATABASE TRANSACTION MANAGEMENT PAGE 86 PAGE 86 PAGE 86 |||

Table ofTable ofTable of

ContentsContentsContents

Pn

FUNDAMENTALS OF DATABASE
MANAGEMENT SYSTEM

In this chapter, you will:

• Understand Database

• Understand DBMS

• Understand Data Model

E-DATABASE DESIGN

1

Data:

Known facts that
can be

recorded and
have an implicit
meaning/ Raw

facts; that is,
facts that have

not been yet
processed to
reveal their

meaning to the
end user.

Information:

Facts (data)
that are

arranged in
meaningful

patterns.

Database:

* A collection of related
data/ Shared collection
of logically related data
(and a description of this
data), designed to meet
the information needs of

an organization.

* Is a centralized and
structured set of data
stored on a computer

system.

* Provide facilities for
retrieving, adding,

modifying and deleting
data when required.

*Provides facilities for
transforming retrieved

data into useful
information.

FUNDAMENTALS OF DATABASE MANAGEMENT
SYSTEM

E-DATABASE DESIGN

2

U
S
E
S
 O

F
 D

A
TA

B
A

S
E
S

IN
 T

H
E
 B

U
S
IN

E
S
S

W
O

R
LD

Businesses may use databases to
manage customers, inventory and
personnel. Databases are powerful

organizational tools that help
businesses quickly record, view and

respond to important information. When
used effectively, they can improve the

efficiency and profitability of a business

Customer relationship management
(CRM) software allows businesses to

document every interaction with a
current or potential customer, leading to

more efficient marketing and sales
departments. Some modern CRM

databases even integrate information
from traditional contact methods such
as phone calls and printed mail with

data obtained from a company's social
media efforts.

Businesses can use databases to keep
track of inventory so they know how
much merchandise is in a warehouse

and how much is available for
customers to purchase from a store's
shelves. Companies also manage their
employees using databases, effectively
tracking large amounts of salary, payroll

and tax data.

E-DATABASE DESIGN

3

IMPORTANCE OF DATABASES TO EVERYDAY LIFE

E-DATABASE DESIGN

4

 MAJOR STEPS IN THE DATABASE DEVELOPMENT PROCESS

E-DATABASE DESIGN

5

SHARING CONCEPT OF DATA IN DATABASE

E-DATABASE DESIGN

6

E-DATABASE DESIGN

7

PROPERTIES OF DATABASES

E-DATABASE DESIGN

8

UNDERSTAND DBMS

E-DATABASE DESIGN

9

FEATURES OF DMBS

CATEGORIES DBMS

Database
Definition

Nonprocedural
Access

Transaction
Processing

Application
Development

Procedural
Language
Interface

Database

Tuning

Desktop databases
•Example : Microsoft Access, FoxPro,

FileMaker Pro, Paradox, Lotus.

Server

databases

•Example : Oracle, Microsoft SQL
Server, IBM, DB2.

E-DATABASE DESIGN

10

 THE TRADITIONAL APPROACH TO INFORMATION PROCESSING

E-DATABASE DESIGN

11

DBMS FUNCTIONS

E-DATABASE DESIGN

12

 ADVANTAGES AND DISADVANTAGES OF DBMS’S

E-DATABASE DESIGN

13

DISADVANTAGES OF TRADITIONAL APPROACH TO INFORMATION
PROCESSING

Disadvantages

Separated and
Isolated Data

Duplication
of data

Concurrent
Access

Anomalies

Data Inflexibility

Data Security

Data
Dependence

E-DATABASE DESIGN

14

IMPORTANCE OF HAVING DBMS

E-DATABASE DESIGN

15

DATABASE ARCHITECTURE

A
Distributed
Database

• is a database that is under the control of a central
database management system (DBMS) in which
storage devices are not all attached to a common CPU.
It may be stored in multiple computers located in the
same physical location, or may be dispersed over a
network of interconnected computers.

•Collections of data (e.g. in a database) can be
distributed across multiple physical locations. A
distributed database can reside on network servers on
the Internet, on corporate intranets or extranets, or
on other company networks. The replication and
distribution of databases improves database
performance at end-user worksites.

Centralized
Database

•has all its data on one place. As it is totally different
from distributed database which has data on
different places. In centralized database as all the data
reside on one place so problem of bottle-neck can
occur, and data availability is not efficient as in
distributed database.

E-DATABASE DESIGN

16

 UNDERSTAND DATA MODEL

LOGICAL DATA MODEL

Data models define
how the logical

structure of a database
is modeled. Data

Models are
fundamental entities to
introduce abstraction in

a DBMS.

Data models
define how

data is
connected to

each other and
how they are

processed and
stored inside
the system

The very first
data model
could be flat
data-models,
where all the
data used are
to be kept in

the same
place.

Earlier data
models were not

so scientific, hence
they were prone
to introduce lots

of duplication and
update anomalies

A logical data model or logical schema is a data model of a specific problem
domain expressed independently of a particular database management product or
storage technology (physical data model) but in terms of data structures such as
relational tables and columns, object-oriented classes, or XML tags. This is as
opposed to a conceptual data model, which describes the semantics of an
organization without reference to technology

E-DATABASE DESIGN

17

TYPES OF LOGICAL DATA MODEL

 THREE LEVEL ARCHITECTURE OF DBMS

Object Based Logical Model

Entity Relationship Data
Model

Record Based Logical Model

Hierarchical data model

Network data model

Relational data model

E-DATABASE DESIGN

18

In

• It shows the architecture of DBMS.
• Mapping is the process of transforming request response

between various database levels of architecture.
• The goal of the three-schema architecture is to separate the

user applications and the physical database.
• Mapping is not good for small database, because it takes more

time.
• In External / Conceptual mapping, DBMS transforms a request

on an external schema against the conceptual schema.
• In Conceptual / Internal mapping, it is necessary to transform

the request from the conceptual to internal levels.
• In Conceptual / Internal mapping, it is necessary to transform

the request from the conceptual to internal levels.

Conceptual
Level

Conceptual level describes the
structure of the whole database for a
group of users.

It is also called as the data model.

Conceptual schema is a representation
of the entire content of the database.

These schema contains all the
information to build relevant external
records.

These schema contains all the
information to build relevant external
records.

It hides the internal details of physical
storage.

E-DATABASE DESIGN

19

Physical
Level

Physical level describes the physical storage structure
of data in database.

It is also known as Internal Level.

This level is very close to physical storage of data.

At lowest level, it is stored in the form of bits with the
physical addresses on the secondary storage device.

At highest level, it can be viewed in the form of files.

The internal schema defines the various stored data
types. It uses a physical data model.

External
Level

External level is related to the data which is viewed by
individual end users.

This level includes a no. of user views or external
schemas.

This level is closest to the user.

External view describes the segment of the database
that is required for a particular user group and hides
the rest of the database from that user group

E-DATABASE DESIGN

20

• External level is related to the data which is viewed
by individual end users.

• This level is closest to the user.

• This level includes a number of user views or external
schemas.

• External view describes the segment of the database
that is required for a particular user group and hides
the rest of the database from that user group

External
Level

• Conceptual level describes the structure of the whole
database for a group of users.

• It is also called as the data model.

• Conceptual schema is a representation of the entire
content of the database.

• These schema contains all the information to build
relevant external records.

• These schema contains all the information to build
relevant external records.

• It hides the internal details of physical storage.

Conceptual
Level

• Physical level describes the physical storage structure
of data in database.

• It is also known as Internal Level.

• This level is very close to physical storage of data.

• At lowest level, it is stored in the form of bits with
the physical addresses on the secondary storage
device.

• At highest level, it can be viewed in the form of files.

• The internal schema defines the various stored data
types. It uses a physical data model.

Physical
Level

E-DATABASE DESIGN

21

QUESTIONS

Chapter 1 Exercise: Fundamentals of Database Management

System

1. Discuss the information needs of a: (a) bank, (b) shopping, (c)

restaurant, (d) student registration, (e) and (f)

2. List and discuss the characteristic of good database design.

3. Differentiate database and database management system

21

RELATIONAL DATA MODEL

In this chapter, you will:

• Understand Relational Databases

• Understand Operators of Relational Algebra

E-DATABASE DESIGN

22

➢ Some popular RDBMS packages are Oracle RDBMS, IBM DB2, Microsoft SQL Server, SAP

 Sybase ASE, Teradata, ADABAS, MySQL, FileMaker, Microsoft Access, Informix, SQLite,

 PostgreSQL, Amazon RDS, MongoDB, Redis etc.

Relational versus Non - Relational Databases

RELATIONAL DATA MODEL

A relational database is a digital database based on
the relational model of data, as proposed by E. F. Codd in

1970. A software system used to maintain relational databases
is a relational database management system (RDBMS).

Virtually all relational database systems use SQL (Structured
Query Language) for querying and maintaining the database

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/E._F._Codd
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/SQL

E-DATABASE DESIGN

23

Relational Data Structure. (Components of database tables)

COMPONENTS OF DATABASE TABLES

Relation –> a table with columns and rows.

Attribute(field) –> a named column of a relation

Domain –> the set of allowable values for one or
more attributes

Tuple(record) –> a record of a relation

Cardinality --> a number of tuple in relation

Degree –> a number of attribute in a relation

Primary Key --> the column or columns that contain values
that uniquely identify each row in a table.

E-DATABASE DESIGN

24

PROPERTIES OF RELATIONAL TABLE

RELATIONAL MODEL SCHEMA AND EVENTS

The table has a name that is distinct from
all other tables in the database.

Each cell of the table contains exactly one
value (atomic)

Each column has a distinct name (technically
called the attribute name)

The order of columns and rows is immaterial

Each row (record) is distinct, there are no
duplicate records

✓ Relation schema is a name relation defined by a

set of attribute and domain name pairs.

◦ Let A1, A2….. An be attributes with domains

D1, D2….Dn. then, the set {A1:D1,

A2:D2…..An:Dn} is a relation schema.

Or more correctly:

{(branchNo : B005, street:22 Deer Rd, city:London,
postcode: SW1 4EH)}

E-DATABASE DESIGN

25

✓ Relational database schema is a set of

relation schemas, each with a distinct

name.

◦ If R1, R2…. Rn are a set of relation

schemas, then we can write the

relational database schema, or

simply relational schemas, R as:

R = {R1, R2…..Rn}Example:

Branch (branchNo, street, city, state,

zip code, mgrStaffNo)

E-DATABASE DESIGN

26

RELATIONAL INTEGRITY

RELATIONAL MODEL RELATIONSHIPS

A special column value, distinct from 0, blank, or any other
value that indicates that the value for the column is missing or
otherwise unknown.

Null

Each instance of an entity (type) must have a unique primary
key value that is not null. Null means empty, not blank or
zero.

Entity
Integrity

This refers to rules about the relationship between entities. A
referenced item in one table (entity) must exist in another
(related) table. for example, if there is a reference to a
product code in one table, then information about that product
(e.g, product name, unit price) must exists in another table.

Referential
Integrity

One to many relationship

Many to many relationship

Self referencing relationship

Definition - The attributes which has a relation with the domain. The

relational integrity has a constraint which is called domain constraint

E-DATABASE DESIGN

27

RELATIONAL ALGEBRA

OPERATOR SYMBOL

Selection ϭ

Projection π

Renaming

Union

Intersection

Difference ˗˗

Cartesian Product X

Join

Logical AND ˄

Logical OR ˅

Logical NOT ˜

The data in relational tables are of limited value unless the data can be

manipulated to generate useful information.

Relational algebra defines the theoretical way of manipulating table

contents using the relational operators: SELECT, PROJECT, JOIN,

INTERSECT, UNION, DIFFERENCE and PRODUCT.

E-DATABASE DESIGN

28

Example : The table Employee

Projection

PROJECT salary (Employee)

Π salary (Employee)

Result:

Selection

SELECT salary <7000 (Employee
Ϭ salary <7000 (Employee)
Result :

nostaff name salary

123 Aisyah 5000

289 Zahra 6000

nostaff name salary

123 Aisyah 5000

289 Zahra 6000

666 Azib 7000

salary

5000

6000

7000

E-DATABASE DESIGN

29

Projection & Selection

PROJECTname, salary (SELECTsalary < 7000 (EMPLOYEE))

Π name, salary (Ϭ salary < 7000 (EMPLOYEE))

 or, step by step, using an intermediate result

Temp <- SELECTsalary <70000(EMPLOYEE)

Result <- PROJECTname, salary(Temp)

Or Temp <- Ϭ salary <70000(EMPLOYEE)

 Result <- Π name, salary(Temp)

Result :

name salary

Aisyah 5000

Zahra 6000

 Cartesian Product

E-DATABASE DESIGN

30

Result : EMPLOYEE X DEPARTMENT

Natural Join

SELECTdept = dnr (EMPLOYEE X DEPARTMENT) or

EMPLOYEE JOINdept = dnr DEPARTMENT

EMPLOYEE dept = dnr DEPARTMENT

Result :

enr ename dept dnr dname

1 Ahmad A A Marketing

2 Sarah C C Legal

3 Sabri A A Marketing

enr ename dept dnr dname

1 Ahmad A A Marketing

1 Ahmad A B Sales

1 Ahmad A C Legal

2 Sarah C A Marketing

2 Sarah C B Sales

2 Sarah C C Legal

3 Sabri A A Marketing

3 Sabri A B Sales

3 Sabri A C Legal

E-DATABASE DESIGN

31

UNION, INTERSECTION AND DIFFERENCE

Example :

S1

S2

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

❖ All of these operations take two input relations, which must be

union-compatible:

▪ Same number of fields.

▪ `Corresponding’ fields have the same type.

E-DATABASE DESIGN

32

Union

21 SS 

 Intersection

21 SS 

 Difference

21 SS −

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age

22 dustin 7 45.0

E-DATABASE DESIGN

33

QUESTIONS

Chapter 2 Exercise: Relational Data Model

1. Define the term relational data model. List the characteristic of this model

2. Explain the relational data structure:

a. Relation

b. Attribute (field)

c. Domain

d. Tuple (record)

e. Degree

f. Cardinality

g. Relational database

3. Explain the terms (a) primary key, (b) foreign key and (c) composite key.

4. List and discuss the major components of a relational database environment.

5. Based on table 2.1, extract and combine the data from Professor and Student table.

Table 2.1: Professor and student tables

a. Professor Union Student (Professor ∪ Student)

b. Professor Intersection Student (Professor ∩ Student)

c. Professor difference Student (Professor - Student)

d. Student difference Professor (Student - Professor)

ENTITY E-R MODEL &

NORMALIZATION

In this chapter, you will:

• Apply E-R Diagram(ERD) in database development

• Apply the Normalization

E-DATABASE DESIGN

34

ENTITY RELATIONSHIP DIAGRAM

Entity Relationship modelling was develop for database
design by Peter Chen in 1976

is a graphical representation of the database system

provides a high-level conceptual data model

supports the user's perception of the data

is composed of entities, attributes, and relationships

3 BASIC COMPONENT

ENTITIES ATTRIBUTES RELATIONSHIPS

E-DATABASE DESIGN

35

Example : Crow’s Foot Model

Notation

Chen’s Model

Crow’s Foot

E-DATABASE DESIGN

36

One and only one (1)

One or many (1..*)

Zero or one o many (0..*)

Zero or one (0.. 1)

E-DATABASE DESIGN

37

Example : Chen’s Model

E-DATABASE DESIGN

38

An entity is an
object or concept
about which you
want to store
information.

Entity
A weak entity
is an entity
that must
defined by a
foreign key
relationship
with another
entity as it
cannot be
uniquely
identified by
its own
attributes
alone.

Weak
Entity

E-DATABASE DESIGN

39

ENTITY IDENTITY EXAMPLE

PERSON STAFF, STUDENT, LECTURER,EMPLOYEE

PLACE DISTRICT, TOWN, STATE

OBJECT BUILDING, TOOL, PRODUCT

EVENT SALE, REGISTRATION, APPLICATION

CONCEPT COURSE, ACCOUNT

Guidelines for naming and defining entity types

An attribute name is a noun

An attribute name should be unique

To make an attribute name unique and clear, each
attribute name should follow a standard format

Similar attributes of different entity types should use
similar but distinguishing names.

E-DATABASE DESIGN

40

IDENTIFIER

Characteristic of Identifier

❖ Will not change in value

❖ Will not be null

E-DATABASE DESIGN

41

Identifier (Key)

Referential (Key)

Candidate
key

•An identifier that could be a key that satifies
the requirements for being a key.

•Some entities may have more than one
candidate key

•Ex: A candidate key for EMPLOYEE is
Employee_ID, a second is the combination
of Employee_Name and Address.

•If there is more than one candidate key,
need to make a choice.

Identifier
(Primary

Key)

•A candidate key that has been selected as
the unique identifying characteristic for an
entity type

E-DATABASE DESIGN

42

RELATIONSHIPS

E-DATABASE DESIGN

43

Degree of Relationships

Cardinality and Connectivity

Connectivity

•one-to-many

•one-to-many

•many-to-many

Cardinality

•minimum and maximum number of instances of
Entity B that can (or must be) associated with each
instance of entity A.

•Cardinality specifies how many instances of an entity
relate to one instance of another entity.

➢ Degree: number of entity types that participate in a

relationship

➢ Three cases :

• Unary: between two instances of one entity type

• Binary: between the instances of two entity types

• Ternary: among the instances of three entity types

• Higher Degree

E-DATABASE DESIGN

44

This is described by the cardinality of the relationship, for which there
are four possible categories.

One to one (1:1) relationship

One to many (1:m) relationship

Many to one (m:1) relationship

Many to many (m:n) relationship

•A single entity instance in one entity
class is related to a single entity instance
in another entity class.

•Example : Each student fills one seat
and one seat is assigned to only one
student.

One to One
Relationship (1:1)

•A single entity instance in one entity
class (parent) is related to multiple entity
instances in another entity class (child)

•Example : One instructor can teach
many courses, but one course can only
be taught by one instructor

One to Many
Relationship (1:M)

•Each entity instance in one entity class is
related to multiple entity instances in
another entity class; and vice versa.

•Example : Each student can take many
classes, and each class can be taken by
many students.

Many to Many
Relationship (M:N)

E-DATABASE DESIGN

45

Cardinality Optional

Cardinality Mandatory

E-DATABASE DESIGN

46

Associate Entities

 Examples of associate entity

Also known as Composite Entities or Bridge Entities

It’s an entity – it has attributes

AND it’s a relationship – it links entities together

When should a relationship with attributes instead be an

associative entity?

❑ The relationship should be many-to-many.

❑ Composed of the primary keys of each of

the entities to be connected

❑ May also contain additional attributes that

play no role in the connective process

E-DATABASE DESIGN

47

NORMALIZATION

Database normalization is the process of organizing the
fields and tables of a relational database to minimize
redundancy

The objective is to isolate data so that additions, deletions,
and modifications of a field can be made in just one table
and then propagated through the rest of the database
using the defined relationships. Database Normalization
Steps From 1NF to 3NF.

Normalization usually involves dividing large tables into
smaller (and less redundant) tables and defining
relationships between them

We have to normalize the database in order to make it
easier to maintain, develop, or to resolve the error.
It will be several steps to do, but usually it just only need
till the third step.

The goal of a relational database design is to generate a set
of relation scheme that allow us to store information easily.

E-DATABASE DESIGN

48

Benefits of Normalization

Normalization produces smaller tables with smaller rows

Searching, sorting, and creating indexes is faster,
since tables are narrower, and more rows fit on a
data page.

Normalization is conceptually cleaner and easier
to maintain and change as your needs change.

Data modification anomalies are reduced.

More tables allow better use of segments to control
physical placement of data.

The cost of finding rows already in the data cache is extremely
low.

E-DATABASE DESIGN

49

Functional Dependency

Transitive Dependencies

Definition

• A functional dependency occurs when
one attribute in a relation uniquely
determines another attribute. This can
be written A -> B which would be the
same as stating "B is functionally
dependent upon A."

Example

• In a table listing employee
characteristics including Social Security
Number (SSN) and name, it can be said
that name is functionally dependent
upon SSN (or SSN -> name) because an
employee's name can be uniquely
determined from their SSN. However,
the reverse statement (name -> SSN) is
not true because more than one
employee can have the same name but
different SSNs.

Definition
• Transitive dependencies occur when

there is an indirect relationship that
causes a functional dependency

Example
• For example, ”A -> C” is a transitive

dependency when it is true only because
both “A -> B” and “B -> C” are true

E-DATABASE DESIGN

50

 Example Of A transitive dependency occurs in the following relation:

Book Genre Author
Author
Nationality

Twenty Thousand Leagues
Under the Sea

Science Fiction Jules Verne French

Journey to the Center of the
Earth

Science Fiction Jules Verne French

Leaves of Grass Poetry

Walt
Whitman

American

Anna Karenina Literary Fiction Leo Tolstoy Russian

A Confession

Religious
Autobiography

Leo Tolstoy Russian

The functional dependency {Book} → {Author Nationality} applies; that

is, if we know the book, we know the author's nationality. Furthermore:

• {Book} → {Author}

• {Author} does not → {Book}

• {Author} → {Author Nationality}

Therefore {Book} → {Author Nationality} is a transitive dependency.

Transitive dependency occurred because a non-key attribute (Author) was

determining another non-key attribute (Author Nationality).

http://en.wikipedia.org/wiki/Twenty_Thousand_Leagues_Under_the_Sea
http://en.wikipedia.org/wiki/Twenty_Thousand_Leagues_Under_the_Sea
http://en.wikipedia.org/wiki/Science_Fiction
http://en.wikipedia.org/wiki/Jules_Verne
http://en.wikipedia.org/wiki/French_people
http://en.wikipedia.org/wiki/Journey_to_the_Center_of_the_Earth
http://en.wikipedia.org/wiki/Journey_to_the_Center_of_the_Earth
http://en.wikipedia.org/wiki/Science_Fiction
http://en.wikipedia.org/wiki/Jules_Verne
http://en.wikipedia.org/wiki/Leaves_of_Grass
http://en.wikipedia.org/wiki/Poetry
http://en.wikipedia.org/wiki/Walt_Whitman
http://en.wikipedia.org/wiki/Walt_Whitman
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Anna_Karenina
http://en.wikipedia.org/wiki/Literary_Fiction
http://en.wikipedia.org/wiki/Leo_Tolstoy
http://en.wikipedia.org/wiki/Russians
http://en.wikipedia.org/wiki/A_Confession
http://en.wikipedia.org/w/index.php?title=Religious_Autobiography&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Religious_Autobiography&action=edit&redlink=1
http://en.wikipedia.org/wiki/Leo_Tolstoy

E-DATABASE DESIGN

51

First Normal Form (1NF)

Choose one attribute or a group of attribute to
be the key in the table

Identify redundant groups in the unnormalized
table

Delete the redundant groups

Steps to transform unnormalized to

1NF

E-DATABASE DESIGN

52

 The example below doesn’t meet the 1NF

Normalization creates two tables and moves dept_no to the second table

E-DATABASE DESIGN

53

Second Normal Form (2NF)

A table is in 2NF if it is in 1NF and if all non-key attributes are dependent on all of
the key.

Since a partial dependency occurs when a non-key attribute is dependent on only
a part of the (composite) key, the definition of 2NF is sometimes phrased as, "A

table is in 2NF if it is in 1NF and if it has no partial dependencies."

A table meets 2NF when the 1NF requirement is met, and all attributes except the
primary key have functional dependency entirely to the primary key

A table doesn’t meet 2NF, if there is an attribute that it’s functional dependency
just partial. Partially dependent on primary key

If there is an attribute that doesn’t have a dependency to the primary key, then
the attribute should be moved or deleted

Identify primary key to the 1NF relationship (based on the example above, the primary
key is lesson_id)

Identify functional dependencies in the relationship (the FD is lesson_id ->
lesson_name)

If there is partial dependencies to the primary key, delete and place it into new
relationship with the copy of its determinan (lesson_name is deleted from the table

student and move to the new table)

Steps to transform 1NF to 2NF

E-DATABASE DESIGN

54

 To normalize this table, move dept_name to a second table

E-DATABASE DESIGN

55

3rd Normal Form (3NF)

A table is in 3NF if it is in 2NF and if it has no transitive
dependencies.

When it has met the 2NF, and there is no non primary key
attribute that dependent to the other non primary key, the

table is met 3NF.

Identify primary key in the 2NF relationship

Identify functional dependencies in the relationship

If there is a transitive dependency to the primary key, delete and place it into new
relationship with the copy of its determinan.

Steps to transform 2NF to 3NF

E-DATABASE DESIGN

56

 The solution is to split the Dept table into two tables. In this case, the Employees table, already

 stores this information, so removing the mgr_lname field from Dept brings the table into Third

 Normal Form.

E-DATABASE DESIGN

57

QUESTIONS

Chapter 3 Exercise: Entity Relationship Model and Normalization

1. What is a well-structured relation? Why must a database have well-structured

 relations?

2. What is ERD?

Figure 3.1: ERD symbol

3. Based on Figure 3.2, explain the ERD symbol below and give the example for each

 symbol.

a. Entity

b. Relationship

c. Attributte

E-DATABASE DESIGN

58

QUESTIONS

Figure 3.2: Insurance ERD

4. Based on Figure 3.2, convert this ERD using Chen Model;

a. Entity

b. Attribute

c. Relationship

d. Cardinality

e. Keys

E-DATABASE DESIGN

59

QUESTIONS

Figure 3.3: Warehouse ERD

5. Based on Figure 3.3, convert this ERD using using Crow Foot Model

a. Entity

b. Attribute

c. Relationship

d. Cardinality

e. Keys

6. What is normalization

7. Why normalization need?

a. Explain the process of normalization.

b. Explain and give example of update anomalies. Types of update anomalies

include:

i. Insertion

ii. Deletion

iii. Modification

STRUCTURED QUERY LANGUAGE

In this chapter, you will:

• Apply SQL commands to a database

E-DATABASE DESIGN

60

SQL stands for
Structured

Query
Language

SQL lets you
access and
manipulate
databases

(query, insert,
update and

modify data)

SQL is an ANSI
(American
National

Standards
Institute)
standard

Each column in a database table is required to have a name and
a data type.

An SQL developer must decide what type of data that will be
stored inside each column when creating a table. The data type

is a guideline for SQL to understand what type of data is
expected inside of each column, and it also identifies how SQL

will interact with the stored data.

SQL DATA TYPES

STRUCTURED QUERY LANGUAGE

E-DATABASE DESIGN

61

SQ
L

D
at

a
Ty

p
e

s

Binary

Database specific binary objects
(BLOB)

Boolean

True/False values (BOOLEAN)

Character

Fixed width (CHAR) or variable
size (VARCHAR)

Numeric

Integer (INT), Real (FLOAT),
Money (MONEY)

Temporal

Time (TIME), Date (DATE),
Timestamp (TIMESTAMP)

Types of SQL

(DML)

Data manipulation
language

(DCL)

Data Control
Language

(TCL)

Transaction Control

(DDL)

Data Definition
Language

E-DATABASE DESIGN

62

•Defining the database
structure and controlling
access the data.

•used to create and destroy
databases and database
objects. These commands will
primarily be used by database
administrators during the
setup and removal phases of a
database project.

•Example: CREATE, ALTER,
DROP, USE.

DDL

• Is used to retrieve, insert and modify
database information. These commands
will be used by all database users during
the routine operation of the database.

•Example : SELECT, UPDATE, DELETE,
INSERT INTO

DML

E-DATABASE DESIGN

63

• Is used to control privileges in
Database. To perform any
operation in the database, such
as for creating tables,
sequences or views, a user
needs privileges. Privileges are
of two types,

•1. System: This includes
permissions for creating
session, table, etc and all types
of other system privileges.

•2. Object: This includes
permissions for any command
or query to perform any
operation on the database
tables.

•Example: GRANT, REVOKE.

DCL

•TCL stands for Transaction Control
Language

•This command is used to manage the
changes made by DML statements.

•TCL allows the statements to be grouped
together into logical transactions

•Example : COMMIT, SAVEPOINT,
ROLLBACK, SET TRANSACTION

TCL

E-DATABASE DESIGN

64

BASIC DDL COMMAND

CREATE

• Installing a database management system (DBMS)
on a computer allows to create and manage many
independent databases.

• For example, to maintain a database of customer
contacts for a sales department and a personnel
database for HR department. The CREATE
command can be used to establish each of these
databases on the platform. For example, the
command:
CREATE DATABASE employees

USE

• The USE command allows to specify the work
with within the DBMS. For example , to issue
some commands that will affect the employees
database, preface them with the following SQL
command:
USE employees

• It's important to always be conscious of the
database that working in before issuing SQL
commands that manipulate data.

E-DATABASE DESIGN

65

ALTER

• Once created a table within a database, you may
wish to modify the definition of it. The ALTER
command allows to make changes to the structure
of a table without deleting and recreating it. Take a
look at the following command: ALTER TABLE
personal_info
ADD salary money null

• This example adds a new attribute to the
personal_info table -- an employee's salary. The
"money" argument specifies that an employee's
salary will be stored using a dollars and cents
format. Finally, the "null" keyword tells the
database that it's OK for this field to contain no
value for any given employee.

DROP

• The final command of the Data Definition
Language, DROP, allows us to remove entire
database objects from our DBMS. For example, if
we want to permanently remove the personal_info
table that we created, we'd use the following
command:
DROP TABLE personal_info

• Similarly, the command below would be used to
remove the entire employees database:
DROP DATABASE employees

• Use this command with care! Remember that the
DROP command removes entire data structures
from your database. If you want to remove
individual records, use the DELETE command of
the Data Manipulation Language.

E-DATABASE DESIGN

66

SQL CONSTRAINTS

SQL constraints are used to specify rules for the data in a
table.

Constraints are used to limit the type of data that can go
into a table. This ensures the accuracy and reliability of
the data in the table. If there is any violation between the
constraint and the data action, the action is aborted.

Constraints can be column level or table level. Column
level constraints apply to a column, and table level
constraints apply to the whole table.

Syntax ;

CREATE TABLE table_name (
column1 datatype constraint,
column2 datatype constraint,
column3 datatype constraint,
....

);

Constraints are
commonly used

in SQL

NOT NULL - Ensures that a column
cannot have a NULL value

UNIQUE - Ensures that all values in a
column are different

PRIMARY KEY - A combination of a
NOT NULL and UNIQUE. Uniquely

identifies each row in a table

FOREIGN KEY - Uniquely identifies a
row/record in another table

CHECK - Ensures that all values in a
column satisfies a specific condition

E-DATABASE DESIGN

67

BASIC DML COMMAND

INSERT

• The INSERT command in SQL is used to add
records to an existing table. Returning to the
personal_info example from the previous
section, let's imagine that our HR department
needs to add a new employee to their database.
They could use a command similar to the one
shown below:

• INSERT INTO personal_info
values('bart','simpson',12345,$45000)

• Note that there are four values specified for the
record. These correspond to the table attributes
in the order they were defined: first_name,
last_name, employee_id, and salary.

SELECT

• The INSERT command in SQL is used to add
records to an existing table. Returning to the
personal_info example from the previous section,
let's imagine that our HR department needs to
add a new employee to their database. They
could use a command similar to the one shown
below:

• INSERT INTO personal_info
values('bart','simpson',12345,$45000)

• Note that there are four values specified for the
record. These correspond to the table attributes
in the order they were defined: first_name,
last_name, employee_id, and salary.

DELETE

• The syntax of this command is similar to that of
the other DML commands. Unfortunately, our
latest corporate earnings report didn't quite
meet expectations and poor Bart has been laid
off. The DELETE command with a WHERE clause
can be used to remove his record from the
personal_info table:

DELETE FROM personal_info
WHERE employee_id = 12345

E-DATABASE DESIGN

68

UPDATE

• The UPDATE command can be used to modify
information contained within a table, either in
bulk or individually. Each year, our company gives
all employees a 3% cost-of-living increase in their
salary. The following SQL command could be
used to quickly apply this to all of the employees
stored in the database:
UPDATE personal_info
SET salary = salary * 1.03

• On the other hand, our new employee Bart
Simpson has demonstrated performance above
and beyond the call of duty. Management wishes
to recognize his stellar accomplishments with a
$5,000 raise. The WHERE clause could be used to
single out Bart for this raise:
UPDATE personal_info
SET salary = salary + $5000
WHERE employee_id = 12345

E-DATABASE DESIGN

69

SQL DATA DEFINITION COMMANDS

CREATE SCHEMA AUTHORIZATION

Create a database schema

CREATE TABLE Creates a new table in the user’s
database schema

NOT NULL Ensures that a column will not have
duplicate value

UNIQUE Ensures that a column will not have
duplicate values

PRIMARY KEY Define a primary key for a table

FOREIGN KEY Define a foreign key for a table

DEFAULT Defines a default value for a column
(when no values is given)

CREATE INDEX Creates an index for a table

CREATE VIEW Creates a dynamic subset of rows /
columns from one or more tables

ALTER TABLE Modifies a table’s definition (adds,
modifies, or deletes attributes or
constraints)

CREATE TABLE AS Creates a new table based on query in
user’s database schema

DROP TABLE Permanently deletes a table (thus its
data)

DROP INDEX Permanently deletes an index

DROP VIEW Permanently deletes a view

E-DATABASE DESIGN

70

CREATE SCHEMA AUTHORIZATION

Create a database schema

INSERT Inserts row(s) into table

SELECT Select attributes from rows in one or
more tables or views

WHERE Restricts the selection of rows based on
one or more attributes

GROUP BY Groups the selected rows based on the a
conditional expression

HAVING Restricts the selection grouped rows
based on a condition

ORDER BY Orders the selected rows based on one
or more attributes

UPDATE Modifies the attribute’s values in one or
more attributes

DELETE Deletes one or more rows from a table

COMMIT Permanently saves data changes

ROLLBACK Restore data to their original values

COMPARISON OPERATORS Used in conditional expressions

LOGICAL OPERATOR Used in conditional expressions

AND / OR / NOT Used in conditional expressions

SPECIAL OPERATORS Used in conditional expressions

BETWEEN Checks whether an attribute value is
within a range

E-DATABASE DESIGN

71

CREATE SCHEMA AUTHORIZATION

Create a database schema

IS NULL Checks whether an attribute value is null

LIKE Checks whether an attribute value
matches a given string pattern

IN Checks whether an attribute value
matches any value within a value list

EXIST Checks whether a sub query returns any
rows

DISTINCT Limits value to unique values

AGGREGATE FUNCTIONS Used with SELECT to return
mathematical summaries on column.

COUNT Returns the number of rows with non-
null values for a given column

MIN Returns the minimum attribute value
found in a given column

MAX Returns the maximum attribute value
found in a given column

SUM Returns the sum of all values for a given
column

AVG Returns the average of all values for a
given column.

E-DATABASE DESIGN

72

SQL QUERIES

Example:

workerno workername position address entrydate tel_no salary

A01 JOHN MANAGER CHERAS 1995-01-01 0199292123 7000

A02 ANI ASSISTANT BANGI 1997-05-30 0132254040 2000

A03 DAVID VICE MANAGER BANGI 1995-05-01 0182852525 4000

A04 MARYAM CLERK AMPANG 1996-07-22 null 1000

A05 SALMAH ACCOUNTANT BANGI 1996-07-12 0174285445 2500

A06 JENNY SYSTEM ANALYST KAJANG 1996-07-30 0137878220 2500

With SQL, we can query a database and have a result set
returned.

All queries are based on the SELECT command.

Syntax:

SELECT column_name(s)

FROM table_name;

* SELECT, FROM can be written in lower case.

E-DATABASE DESIGN

73

Example:

SELECT

✓ Select certain columns:

SELECT workerno, workername FROM worker;

✓ Result:

✓ Select all columns:

SELECT * FROM worker;

✓ Result: will display the entire table.

SELECT DISTINCT STATEMENT

✓ The DISTINCT keyword is used to return only distinct (different)

values.

✓ Consider this table: worker

workerno workername position address entrydate tel_no salary

A01 JOHN MANAGER CHERAS 1995-01-01 0199292123 7000

A02 ANI ASSISTANT BANGI 1997-05-30 0132254040 2000

A03 DAVID VICE MANAGER BANGI 1995-05-01 0182852525 4000

A04 MARYAM CLERK AMPANG 1996-07-22 null 1000

A05 SALMAH ACCOUNTANT BANGI 1996-07-12 0174285445 2500

A06 JENNY SYSTEM ANALYST KAJANG 1996-07-30 0137878220 2500

workerno workername

A01 JOHN

A02 ANI

A03 DAVID

A04 MARYAM

A05 SALMAH

A06 JENNY

E-DATABASE DESIGN

74

✓ If we use:

SELECT address FROM worker;

✓ Result:

address

CHERAS

BANGI

BANGI

AMPANG

BANGI

KAJANG

✓ If we use:

SELECT DISTINCT address FROM worker;

✓ Result:

address

CHERAS

BANGI

AMPANG

KAJANG

Calculated Field

✓ Example:

 SELECT workerno, workername, salary /2

 FROM worker;

E-DATABASE DESIGN

75

✓ Result:

Rename Column

✓ To rename a column, use AS statement.

✓ Example:

 SELECT workerno AS Number,

 workername AS Name

 FROM worker;

✓ Result:

workerno workername Salary/2

A01 JOHN 5000.0000

A02 ANI 1000.0000

A03 DAVID 4000.0000

A04 MARYAM 3500.0000

A05 SALMAH 1750.0000

A06 JENNY 1750.000

Number Name

A01 JOHN

A02 ANI

A03 DAVID

A04 MARYAM

A05 SALMAH

A06 JENNY

E-DATABASE DESIGN

76

SQL Where Clause

Operator

Description

= Equal

< > Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

WILDCARDS or LIKE Search for a pattern

IN If you know that exact value want to
return for at least one of the columns

WHERE clause is to specify a selection criterion.

Syntax:

SELECT column_name(s)

FROM table_name

WHERE conditions;

With WHERE clause, the following operators can be
used:

*in some versions of SQL,

<> operator may be written as !=

E-DATABASE DESIGN

77

Simple Queries

✓ List all the workers you earn more than 4000.

 SELECT workername, salary

 FROM worker

 WHERE salary >4000;

✓ Result:

✓ List all worker who live in Bangi or Kajang.

SELECT workername, address

FROM worker

WHERE address = 'Bangi'

OR address = 'Kajang‘;

✓ Result:

workername salary

JOHN 10000

DAVID 8000

MARYAM 7000

workername address

ANI BANGI

DAVID BANGI

SALMAH BANGI

JENNY KAJANG

E-DATABASE DESIGN

78

✓ List all the worker who earn between 3000 to 9000.

SELECT workername, salary

FROM worker

WHERE salary BETWEEN 3000 AND 9000;

✓ Result:

*BETWEEN…AND operator selects a range of data between two values

*can be numbers, texts or dates.

✓ List the Director and Vice Director.

SELECT workername, position

 FROM worker

 WHERE position

 IN ('DIRECTOR', 'VICE DIRECTOR');

✓ Result:

*IN can be used if you know the exact value that you seek for at least

one of the columns.

workername salary

DAVID 8000

MARYAM 7000

SALMAH 3500

JENNY 3500

workername position

JOHN DIRECTOR

DAVID VICE DIRECTOR

E-DATABASE DESIGN

79

✓ List the worker who is not living in Bangi.

 SELECT workername, address

 FROM worker

 WHERE address NOT IN ('BANGI');

 Or

 SELECT workername, address

 FROM worker

 WHERE address <> 'BANGI‘;

✓ Result:

✓ Find worker who doesn’t have phone number.

✓ Consider this table : worker

workerno workername position address entrydate tel_no salary

A01 JOHN DIRECTOR CHERAS 1995-01-01 0199292123 10000

A02 ANI SECRETARY BANGI 1997-05-30 0132254040 2000

A03 DAVID VICE DIRECTOR BANGI 1995-05-01 0182852525 8000

A04 MARYAM MANAGER AMPANG 1996-07-22 NULL 7000

A05 SALMAH SYSTEM ANALYST BANGI 1996-07-12 NULL 3500

A06 JENNY ACCOUNTANT KAJANG 1996-07-30 0137878220 3500

 SELECT workername, tel_no

 FROM worker

 WHERE tel_no IS NULL;

workername address

JOHN CHERAS

MARYAM AMPANG

JENNY KAJANG

E-DATABASE DESIGN

80

✓ Result:

Using SQL % Wildcards

In SQL, wildcard characters are used with the SQL
LIKE operator.

SQL wildcards are used to specify a search for a
pattern in a column.

A "%" sign can be used to define wildcards
(missing letters in the pattern) both before and
after the pattern.

Using LIKE

workername tel_no

MARYAM NULL

SALMAH NULL

E-DATABASE DESIGN

81

✓ List all the building in Taman Kota.

 SELECT buildno, address

 FROM building

 WHERE address LIKE '%TAMAN KOTA%‘;

The following SQL statement will return

persons with first names that start with an 'O':

SELECT *

FROM Persons

WHERE FirstName

LIKE 'O%' ;

The following SQL statement will return
persons with first names that end with an 'a':

SELECT *

FROM Staff

WHERE FirstName

LIKE '%a' ;

The following SQL statement will return
persons with first names that contain the

pattern 'la':

SELECT *

FROM Staff

WHERE FirstName

LIKE '%la%' ;

E-DATABASE DESIGN

82

✓ Result:

SQL AGGREGATE FUNCTIONS

SQ
L

A
gg

re
ga

te
 F

u
n

ct
io

n

AVG – calculates the average of
a set of values.

COUNT – counts rows in a
specified table or view.

MIN – gets the minimum value
in a set of values.

MAX – gets the maximum
value in a set of values.

SUM – calculates the sum of
values.

buildno address

B03 6, TAMAN KOTA

B04 2, TAMAN KOTA

An aggregate function allows you to perform a calculation on a
set of values to return a single scalar value. We often use
aggregate functions with the GROUP BY and HAVING clauses of
the SELECT statement.

http://www.zentut.com/sql-tutorial/sql-group-by/
http://www.zentut.com/sql-tutorial/sql-having/
http://www.zentut.com/sql-tutorial/sql-select/

E-DATABASE DESIGN

83

SQL AGGREGATE FUNTION EXAMPLES

✓ AVG

SELECT AVG (unitsinstock)

 FROM products;

✓ COUNT

 SELECT COUNT(*)

 FROM products;

✓ MIN

 SELECT MIN (unitsinstock)

 FROM products;

✓ MAX

 SELECT MAX (unitsinstock)

 FROM products;

✓ SUM

SELECT categoryid, SUM (unitsinstock)

FROM products

GROUP BY categoryid;

E-DATABASE DESIGN

84

QUESTIONS

Chapter 4 Exercise: Structured Query Language

1. Explain the terms below;

a. Data definition language (DDL)

b. Data manipulation language (DML)

c. Transaction control language (TCL)

2. Based on the figure 4.1, write SQL statement for the following:

Figure 4.1 Store database

a. Create a store database

b. Create the table below with primary key

c. Update table contacts and add new column state

d. Update table order details and add a new column description

e. Update table product and drop a depth column

3. Based on Figure 4.2, write SQL statement for the following:

a. Find the total of cost, sales and profit

b. Find the minimum and maximum for cost

c. Count the number of product

d. Count the number of product for stationary

e. Find the average of sale group by type

ion Language (DDL) and a Data Manipulation L

E-DATABASE DESIGN

85

ProductID name type cost sales profit

S0001 eraser stationary 0.20 0.50 0.30

S0002 pen stationary 0.50 1.00 0.50

B0001 File book 1.00 2.50 1.50

S0003 glue stationary 0.70 1.50 0.80

S0004 Stapler stationary 2.00 3.50 1.50

B0002 Learn ABC book 2.50 4.00 1.50

B0003 Magazine book 5.00 7.00 2.00

Figure 4.2 Product table

4. Based on Figure 4.3, write SQL statement for the following:

FName Lname City Age Salary (RM)

Hamizan Kamal Dungun 40 5000

Sarah Firdaus Kemaman 45 5500

Zainuddin Abdullah Dungun 29 3000

Hadi Kamarul Kemaman 27 2700

Haziq Marang 43 4000

Figure 4.3 Employee table

a. Find the total average for age

b. Find the minimum and maximum for salary

c. Count the number of employee

d. Find the Fname that begin with H letter

e. Find the Lname that contains the pattern “a” in employee table.

do you need a Data Definition Language (DDL) and a Data Manipulation L

DATABASE TRANSACTION
MANAGEMENT

In this chapter, you will:

• Demonstrate database transaction management

E-DATABASE DESIGN

86

DATABASE TRANSACTION MANAGEMENT

A transaction symbolizes a unit of work performed within
a database management system (or similar system) against a
database, and treated in a coherent and reliable way
independent of other transactions. A transaction generally
represents any change in a database

To provide reliable units of work that allow correct recovery
from failures and keep a database consistent even in cases of
system failure, when execution stops (completely or
partially) and many operations upon a database remain
uncompleted, with unclear status.

To provide isolation between programs accessing a database
concurrently. If this isolation is not provided, the programs'
outcomes are possibly erroneous.

E-DATABASE DESIGN

87

DATABASE TRANSACTION MANAGEMENT

Batch
Transaction

• Transactions are accumulated over a period
of time and processed as a single unit, or
batch. For example, a store may update its
sales records every day after the store closes

On-line
transaction

(OLTP)

• OLTP database systems are commonly used
for order entry, financial transactions,
customer relationship management and
retail sales via the Internet. Almost any
business that has a large number of users
who conduct short online transactions needs
an OLTP system. Database queries with
online transaction processing systems are
simple, typically with sub-second response
times and in most cases return relatively few
records. OLTP databases need to operate in
as close to real time as possible.

On-line
transaction

(OLTP)

• OLTP database systems are commonly used
for order entry, financial transactions,
customer relationship management and
retail sales via the Internet. Almost any
business that has a large number of users
who conduct short online transactions needs
an OLTP system. Database queries with
online transaction processing systems are
simple, typically with sub-second response
times and in most cases return relatively few
records. OLTP databases need to operate in
as close to real time as possible.

E-DATABASE DESIGN

88

E-DATABASE DESIGN

89

A transaction in a database system must
maintain Atomicity, Consistency, Isolation
and Durability commonly known as ACID

properties

in order to ensure accuracy,
completeness, and data integrity.

E-DATABASE DESIGN

90

All types of database access operation which are held
between the beginning and end transaction statements are
considered as a single logical transaction. During the
transaction the database is inconsistent. Only once the
database is committed the state is changed from one
consistent state to another.

E-DATABASE DESIGN

91

E-DATABASE DESIGN

92

E-DATABASE DESIGN

93

E-DATABASE DESIGN

94

DATABASE TRANSACTION MANAGEMENT

✓ To allow many transactions to access the same data at the same

time.

✓ Concurrency control mechanism is needed to ensure that

concurrent transactions do not interfere with each other’s

operation.

✓ To ensure that several users trying to update the same data do so

in a controlled manner so that the result of the updates is correct.

✓ Example: Several reservation clerks try to assign a hotel room; the

DBMS should ensure that only clerk could access each hotel room

at a time for assignment to a customer.

✓ Process of managing simultaneous operations on the database

without having them interfere with one another.

E-DATABASE DESIGN

95

Lost Update

• Successfully completed update overridden by
another user

• Example: T1 withdrawing RM10 from an account
with balX, initially RM100. T2 depositing RM100
into same account. Serially, final balance would be
RM190.

Uncommitted
Data

• Occurs when one transaction can see intermediate
results of another transaction before it has
committed

• Example: T1 updates balX to RM200 but it aborts,
so balX should be back at original value of RM100.
T3 has read new value of balX (RM200) and uses
value as basis of RM10 reduction, giving a new
balance of RM190, instead of RM90.

DATABASE TRANSACTION MANAGEMENT

E-DATABASE DESIGN

96

Inconsistent
Retrieval

• Occurs when a transaction calculates an aggregate
or summary function (e.g SUM) over a set of data,
which the other transactions are updating

• The inconsistency happens because the
transaction may read some data before they are
changed and read other data after they are
changed

The Scheduler

• Establishes the order in which the operations
within concurrent transaction are executed.

• Interleaves the execution of database operations
to ensure serializability

• To determine the appropriate order,the scheduler
bases its actions on concurrency control algoritms
such as locking or time stamping methods.

E-DATABASE DESIGN

97

E-DATABASE DESIGN

98

E-DATABASE DESIGN

99

1. Lock Granularity:

LOCKING
METHODS

• A lock is a variable, associated with the data item,
which controls the access of that data item.
Locking is the most widely used form of the
concurrency control.

Locking Methods

Lock Granularity Lock Types Deadlocks

• A database is basically
represented as a collection of
named data items

• The size of the data item
chosen as the unit of
protection by a concurrency
control program is
called GRANULARITY

Lock
Granularity

DATABASE TRANSACTION MANAGEMENT

E-DATABASE DESIGN

100

Lo
ck

in
g

Le
ve

l

Database level

Table level

Page level

Row (Tuple) level

Attributes (fields)
level

• At database level locking, the entire
database is locked. Thus, it
prevents the use of any tables in
the database by transaction T2
while transaction T1 is being
executed.

• Database level of locking is suitable
for batch processes. Being very
slow, it is unsuitable for on-line
multi-user DBMSs.

Database

level locking

• At table level locking, the entire
table is locked. Thus, it prevents
the access to any row (tuple) by
transaction T2 while transaction T1
is using the table. if a transaction
requires access to several tables,
each table may be locked.

• However, two transactions can
access the same database as long
as they access different tables.
Table level locking is less restrictive
than database level. Table level
locks are not suitable for multi-user
DBMS

Table level

locking

E-DATABASE DESIGN

101

• At page level locking, the entire
disk-page (or disk-block) is
locked. A page has a fixed size such
as 4 K, 8 K, 16 K, 32 K and so on. A
table can span several pages, and a
page can contain several rows
(tuples) of one or more tables.
Page level of locking is most
suitable for multi-user DBMSs.

Page level

locking

• At row level locking, particular row
(or tuple) is locked. A lock exists
for each row in each table of the
database. The DBMS allows
concurrent transactions to access
different rows of the same table,
even if the rows are located on the
same page

• The row level lock is much less
restrictive than database level,
table level, or page level locks. The
row level locking improves the
availability of data. However, the
management of row level locking
requires high overhead cost.

Row (Tuple) level
Locking

• At attribute level locking, particular
attribute (or field) is
locked. Attribute level locking
allows concurrent transactions to
access the same row, as long
as they require the use of different
attributes within the row. The
attribute level lock yields the most
flexible multi-user data access. It
requires a high level of computer
overhead.

Attributes (fields)
level Locking

E-DATABASE DESIGN

102

2. Lock Types:

a. Binary Locking

Types of locking
techniques

Binary Locking
Shared/Exclusive

Locking
Two - Phase

Locking (2PL)

A binary lock can have
two states or values:

locked and unlocked (or
1 and 0, for simplicity).

A distinct lock is
associated with each

database item X.

If the value of the lock on X is
1, item X cannot be accessed
by a database operation that

requests the item. If the value
of the lock on X is 0, the item

can be accessed when
requested. We refer to the

current value (or state) of the
lock associated with item X as

LOCK(X).

Lock_item(X):

A transaction requests
access to an item X by first

issuing a lock_item(X)
operation. If LOCK(X) = 1,

the transaction is forced to
wait. If LOCK(X) = 0, it is
set to 1 (the transaction
locks the item) and the

transaction is allowed to
access item X.

Unlock_item (X):
When the transaction is

through using the item, it
issues an unlock_item(X)

operation, which sets
LOCK(X) to 0 (unlocks the

item) so that X may be
accessed by other

transactions. Hence, a binary
lock enforces mutual

exclusion on the data item ;
i.e., at a time only one

transaction can hold a lock.

E-DATABASE DESIGN

103

b. Shared / Exclusive Locking

Exclusive lock :

These Locks are referred as Write
locks, and denoted by 'X'.

If a transaction T has obtained
Exclusive lock on data item X, then

T can be read as well as write X.
Only one Exclusive lock can be

placed on a data item at a time.
This means multipls transactions
does not modify the same data

simultaneously.

Shared lock :

These locks are reffered as
read locks, and denoted by 'S'.
If a transaction T has obtained

Shared-lock on data item X,
then T can read X, but cannot
write X. Multiple Shared lock
can be placed simultaneously

on a data item.

E-DATABASE DESIGN

104

c. Two - Phase Locking (2PL)

Two-phase locking (also
called 2PL) is a method or a

protocol of controlling
concurrent processing in

which all locking operations
precede the first unlocking

operation.

A transaction is said to
follow the two-phase
locking protocol if all

locking operations (such as
read_Lock, write_Lock)
precede the first unlock

operation in the transaction

2PL is the standard protocol
used to maintain level 3

consistency 2PL defines how
transactions acquire and

relinquish locks. The
essential discipline is that

after a transaction has
released a lock it may not
obtain any further locks

E-DATABASE DESIGN

105

A transaction shows Two-Phase Locking technique.

Time Transaction Remarks

t0 Lock - X (A) acquire Exclusive lock on A.

t1 Read A read original value of A

t2 A = A - 100 subtract 100 from A

t3 Write A write new value of A

t4 Lock - X (B) acquire Exclusive lock on B.

t5 Read B read original value of B

t6 B = B + 100 add 100 to B

t7 Write B write new value of B

t8 Unlock (A) release lock on A

t9 Unock (B) release lock on B

2 phases

in 2PL

A growing
phase

a transaction acquires all the
required locks without

unlocking any data. Once all
locks have been acquired, the

transaction is in its locked
point

A shrinking
phase

a transaction releases all locks
and cannot obtain any new

lock.

E-DATABASE DESIGN

106

3. Deadlocks:

DEADLOCK

Is a condition in which two
(or more) transactions in a

set are
waiting simultaneously
for locks held by some

other transaction in the
set.

Transaction can
continue because each
transaction in the set is

on a waiting
queue, waiting for one

of the other
transactions in the set

to release the lock on an
item

Two transactions are
mutually excluded
from accessing the

next record required
to complete their
transactions, also

called a deadly
embrace.

Is also called a
circular waiting
condition where

two transactions are
waiting (directly or
indirectly) for each

other

Is an impasse that may
result when two or more

transactions are
each waiting for locks to
be released that are held

by the other. Transactions
whose lock requests have
been refused are queued

until the lock can
be granted.

E-DATABASE DESIGN

107

Transaction A = access data items X
and Y

Transaction B = access data items Y
and X

Example :

A deadlock exists two
transactions A and B

Transaction-A has
aquired lock on X
and is waiting to
acquire lock on y.

While,
Transaction-B has
aquired lock on Y
and is waiting to
aquire lock on X.

But, none of them
can execute

further.

Transaction-A Time Transaction-B

 --- t0 ---

Lock (X) (acquired lock on X) t1 ---

 --- t2 Lock (Y) (acquired lock on Y)

Lock (Y) (request lock on Y) t3 ---

Wait t4 Lock (X) (request lock on X)

Wait t5 Wait

Wait t6 Wait

Wait t7 Wait

E-DATABASE DESIGN

108

• This technique allows deadlock to occur,
but then, it detects it and solves it

• Here, a database is periodically checked for
deadlocks

• If a deadlock is detected, one of the
transactions, involved in deadlock cycle, is
aborted. other transaction continue their
execution

• An aborted transaction is rolled back and
restarted.

Deadlock detection

• Deadlock prevention technique avoids the
conditions that lead to deadlocking. It
requires that every transaction lock all
data items it needs in advance

• If any of the items cannot be obtained,
none of the items are locked. In other
words, a transaction requesting a new
lock is aborted if there is the
possibility that a deadlock can occur.

• Thus, a timeout may be used to abort
transactions that have been idle for too
long.

• If the transaction is aborted, all the
changes made by this transaction are
rolled back and all locks obtained by the
transaction are released. The transaction
is then rescheduled for execution

Deadlock Prevention

E-DATABASE DESIGN

109

Database Recovery
Management

Database
Recovery

Database Back-upTransaction
Recovery

Database Recovery

-> Restore a database from a given state to a previous

consistent state

-> Atomic Transaction Property (All or None)

-> Backup Levels:

* Full Backup

* Differential Backup

* Transaction Log Backup

-> Database / System Failures:

* Software (O.S., DBMS, Application Programs, Viruses)

* Hardware (Memory Chips, Disk Crashes, Bad Sectors)

* Programming Exemption (Application Program rollbacks)

* Transaction (Aborting transactions due to deadlock

detection)

* External (Fire, Flood, etc)

DATABASE TRANSACTION MANAGEMENT

E-DATABASE DESIGN

110

Transaction Recovery

-> Recover Database by using data in the Transaction Log

-> Write-Ahead-Log – Transaction logs need to be written

before any database data is updated

-> Redundant Transaction Logs – Several copies of log on

different devices

-> Database Buffers – Buffers are used to increase processing

time on updates instead of accessing data on disk

-> Database Checkpoints – Process of writing all updated

buffers to disk→While this is taking place, all other

requests are not executes

* Scheduled several times per hour

* Checkpoints are registered in the transaction log

Database Backup

-> Database backup is a way to protect and restore a

database. It is performed through database replication

and can be done for a database or a database server.

-> Typically, database backup is performed by the RDBMS or

similar database management software.

-> Database administrators can use the database backup

copy to restore the database to its operational state along

with its data and logs. The database backup can be stored

locally or on a backup server.

-> Database backup is also created/performed to ensure a

company’s compliance with business and government

regulations and to maintain and ensure access to

critical/essential business data in case of a disaster or

technical outage

E-DATABASE DESIGN

111

QUESTIONS

Chapter 5 Exercise: Database Transaction Management

1. What is transaction?

2. Explain the properties of transaction:

Figure 5.1 Properties of transaction

3. What is concurrency control?

4. Explain concurrency control algorithm.

5. Why database security is so important? Discuss the impact of a database

failure in (a) an airline, (b) a bank and (c) a politeknik

6. Discuss some of the main technique used to recover from a database failure.

:

Database
Database Management System (DBMS)
Data Model
Relational Data Model
Entity Relationship Model
Normalization
Structured Query Language
Database Transaction Management

Reviewing basic concepts of databases andReviewing basic concepts of databases andReviewing basic concepts of databases and
database design, then turns to creating,database design, then turns to creating,database design, then turns to creating,
populating, and retrieving data using SQL.populating, and retrieving data using SQL.populating, and retrieving data using SQL.
Topics such as Database Management System,Topics such as Database Management System,Topics such as Database Management System,
the relational data model, Entity Relationshipthe relational data model, Entity Relationshipthe relational data model, Entity Relationship
Diagram, normalization, data entities, andDiagram, normalization, data entities, andDiagram, normalization, data entities, and
database transaction management aredatabase transaction management aredatabase transaction management are
covered clearly and concisely. This bookcovered clearly and concisely. This bookcovered clearly and concisely. This book
provides the conceptual and practicalprovides the conceptual and practicalprovides the conceptual and practical
information necessary to develop a databaseinformation necessary to develop a databaseinformation necessary to develop a database
design and management scheme that ensuresdesign and management scheme that ensuresdesign and management scheme that ensures
data accuracy and user satisfaction whiledata accuracy and user satisfaction whiledata accuracy and user satisfaction while
optimizing performance.optimizing performance.optimizing performance.

E-DATABASE DESIGN'E-DATABASE DESIGN'

HIGHLIGHTS

