E DATABASE

;;;;;;

RAMLAH BINTI MD ZAIN
MAZLINA BINTI MUSTAPHA

- DATABASE DESIGN

sl

n .
Ramlah Bint;i I\/I _Za;'?*

Mazlina Binti

;o |

Depart;me:nt of Info_
CommunicationTec ,
Sultan Mizan Zainal Abidir Polytechn|==

EDITION 2021

First Publishing 2021

All rights %er\/e_d. No part of this'"document may
reproduce stored - retrieval system or -’
transmitted .in any form origy any ' mealt

(electronic, mechanlcal photo pylng recordi
or otherwise) without the p mlssmn of t
copyright owner ' e

)] .
l.

Published by; < |
Politeknik Suktan Mizan Zalnal A
KM 08, Jalan Paka,
23000 Dungun, Terengganu Da
Tel : 098400800 |
Fax : 09-8458781.
Www.psmza.édu. my

..................
..............

E-DATABASE DESIGN
EDITION 2021

e ISBN 978-967-2099-74-1

Ramlah Binti Md Zain
Mazlina Binti Mustapha

In the name of Allah, The Most Gracious and

Merciful. All praise to Allah SW.T for His great

M. _loving kindness ‘and blessing, this book is
" _successf blished. '

raduate, or first
émmsmms

.|on s‘truc‘tured
ase transchon

3 L]

the p055|b|l|ty in-publishing this book espeually
family, friends and colleagues
Theboeokssovers all the essential z;,spects of
datgbase ' design based on those used in
existing commercial or experimental database
design. Hopefully students and lecturers can
use it for a learning process.

Thank you.

@™y . This digital writing reviewing basic

then ‘turns) to creating,

ating, and ret |evin§ data using

populating
SQL. Topics suct ai Database
> ahagement System; the rélational

\ data modael, Ntit

AN

<__Diagram, . d'a
] L T
® Jatabc i .transaction
, [‘I 3.;';" .--;-::Elr e
_~mahagement are covered clearly and
o . ' : BERL
ongisely. This book [provides: the

onceptual and practical information
necessary to develop 'a database
design-andr nagemen's,chgemhe:'thtat
emsures data - accuracy , and user
satisfaction - while . optimizing
performance. |

a
—q

Table of
C()nt,ents

FUNDAMENTALS OF DATABASE MANAGEMENT .
'SYSTEM PAGEA;| = I - '

RELATIONAL DATA MODEL:PAGE 22 |

ENTITY-RELATIONSHIP (ER) MODEL &

NORMALIZATION PAGE 34 |

STRUCTURED QUERY LANGUAGE (SQL) PAGE 60 |

DATABASE TRANSACTION MANAGEMENT PAGE 86 |

\
CHARPTER
FUNDAMENTALS OF DATABASE

MANAGEMENT SYSTEM

In this chapter, you will:

e Understand Database
e Understand DBMS
e Understand Data Model

E-DATABASE DESIGN

FUNDAMENTALS OF DATABASE MANAGEMENT
SYSTEM

Data:

Known facts that
can be
recorded and
have an implicit
meaning/ Raw
facts; that is,
facts that have
not been yet
processed to
reveal their
meaning to the
end user.

Database:

* A collection of related

data/ Shared collection

of logically related data

(and a description of this

data), designed to meet

the information needs of
an organization.

*|s a centralized and
structured set of data
stored on a computer

_:> system.
EII:::I * Provide facilities for
retrieving, adding,

modifying and deleting
data when required.

*Provides facilities for
transforming retrieved

Information:

FOT%TST(dOTO) data info useful
at are information.
arranged in

meaningful

patterns.

USES OF DATABASES

IN THE BUSINESS

WORLD

E-DATABASE DESIGN

Businesses may use databases to
manage customers, inventory and
personnel. Databases are powerful
organizational tools that help
businesses quickly record, view and
respond to important information. When
used effectively, they can improve the
efficiency and profitability of a business

Customer relationship management
(CRM) software allows businesses to
document every interaction with a
current or potential customer, leading to
more efficient marketing and sales
— departments. Some modern CRM
databases even integrate information
from traditional contact methods such
as phone calls and printed mail with
data obtained from a company's social
media efforts.

Businesses can use databases to keep
track of inventory so they know how
much merchandise is in a warehouse

and how much is available for

— customers to purchase from a store's
shelves. Companies also manage their
employees using databases, effectively

tracking large amounts of salary, payroll

and tax data.

E-DATABASE DESIGN

IMPORTANCE OF DATABASES TO EVERYDAY LIFE

Data Integration %

* Achieved by combining master files
into larger pools of data accessible by
many programs.

Data Sharing }

* |t's easier to share data that's Y
integrated—Example : the FBlis
planning an 8 year, 5400 million
database project to make data more
available to agency users.

AN

* Reports can be revised easily and
generated as needed.

* The database can easily be browsed to
research problems or obtain detailed
information.

h

Minimal Data Redundancy
and Inconsistencies *

|
|

-

* Because data items are usually stored
only once.

Data Independence -(

5,

A
AN

e

d

Relationships can be explicitly defined and
used in the preparation of management
reports.

EXAMPLE: Relationship between selling

AN

* Data management is more efficient
because the database administrator is
responsible for coordinating,
controlling, and managing data

Central Management of
Data
[Cross-Functional Analysis %

* Data items are independent of the
programs that use them..

* Consequently, a data item can be
changed without changing the
program and vice versa.

* Makes programming easier and
simplifies data management.

E-DATABASE DESIGN

MAJOR STEPS IN THE DATABASE DEVELOPMENT PROCESS

Business Information Requirements

Conceptual
Analyze . Entity Relationship Diagram
Data Modelling v P Hlse
. Database
Design Design Table Definitions, Index,
g View, Cluster
Build Database Build

Operational Database

SHARING CONCEPT OF DATA IN DATABASE

E-DATABASE DESIGN

i * The ability to share | + R ™ ~
C th dat o The most significant v Three types of data
.E re:::urczame W?tﬁ -Iu-,; d_ifference between a sharing :
= _ o - file based systems .)

C multiple applications @ and database Sharing Data
% or users. + systems is data between functional
O * It implies that the © sharing. units.
- E =

data are stored in © *pata sharing also Sharing data

ONE OF MOre Servers 6 requires a major between _

in the netl.l.r.crl-(and change in the way of management units.

that there is some data are handled and *Sharing data

software locking managed within the between

mechanism that organization. geographically

pr:ven;:s dﬂlE sfame dispersed location.

set of data from

being changed by

two people at the

same fime, . S

L A

* Data sharing is a

primary feature of a

database

management system

(DBMS)

.

) » The term data sharing suggests that people in
Sharin different functional areas are use a common
Data pc:c;]l of d;ta. EECh ofﬂ;]ese arE own applications

without data sharing the marketing group may
w) have their data files. The purchasing group like
Functional accounts group their own data files and
Units marketing group have their own data files and
each group benefits from its own data.

E-DATABASE DESIGN

Sharing Data
Between
Management
Units

* Different levels of users also need to share
data . The three different levels of users are
1. Operation level, 2. Middle Management
Level, 3. Execute level.

* These three levels are corresponded to the
three different types of system these are
Electronic data processing, Management
information system, and Decision support
system.

Sharing data |

between
geographically
™

dispersed
location

* A company with several locations has

~important data distributed over a wvalid

geographically area sharing. These data is a
significant problems. A centralized database is
physically contained to a single location
controlled by a single computer that is Personal
computer most function for which databases
are created and accomplished more easily . If
the database is centralized and it is easily to
update and back up , recovery and control
access to a database . If we know database

“— exactly where it is and what’s software control

it and identify the remote place where it is
located.

E-DATABASE DESIGN

PROPERTIES OF DATABASES

AN

p
Usability (ease of use) manipulated in ways which match user
reguirements.

> * Ensures that data can be accessed and

I‘-r"
N * Ensures that users do not have unduly long
Efficiency > response times when accessing data.
.
-H\ll

.
J
r,f
* Ensures that users can access the data they
Completeness | > want. Note that this includes ad hoc queries,
which would not be explicitly given as part of
a statement of data requirements.
N S/
4 N
* Ensures that data is both consistent (no
Integrity | contradictory data) and correct (no invalid
data), and ensures that users trust the
database.
. J
4 M
* Ensures that a database can evolve (without
Flexibility | requiring excessive effort) to satisfy changing
user requirements
. J

E-DATABASE DESIGN

UNDERSTAND DBMS

| Definition |

» A database management system (DBMS) is the software system that
allows users to define, create and maintain a database and provides
controlled access to the data.

* A Database Management System (DBMS) is basically a collection of
programs that enables users to store, modify, and extract information
from a database as per the requirements. DBMS is an intermediate layer
between programs and the data. Programs access the DBMS, which then
accesses the data.

* There are different types of DBMS ranging from small systems that run on
personal computers to huge systems that run on mainframes.

Examples of database application

-> Computerized library systems
-> Automated teller machines
-> Flight reservation systems

-> Computerized parts inventory systems

| Various Common of DBMS

Paradox, Lotus, FileMaker, Microsoft Access, Dbase, FoxPro, IMS
and Oracle, MySQLl, Microsoft SQL Server, PostgreSQL and DB2

| Functions of DBMS

-> create update, and extract information from their databases.

-> Compared to a manual filing system, the biggest advantages

to a computerized database system are speed, accuracy, and'
accessibility.

E-DATABASE DESIGN

FEATURES OF DMBS

Database Nonprocedural Transaction

Definition Access Processing

Application Procedural Database
Language

Development Tuning

Interface

CATEGORIES DBMS

e Example : Microsoft Access, FoxPro,

Desktop databases < FileMaker Pro, Paradox, Lotus.

Server < Example : Oracle, Microsoft SQL
databases Server, IBM, DB2.

E-DATABASE DESIGN

THE TRADITIONAL APPROACH TO INFORMATION PROCESSING

In the early days of computing, data management and storage
was a very new concept for organizations. The traditional
approach to data handling offered a lot of the convenience of
the manual approach to business processes (e.g. hand written
invoices & account statements, etc.) as well as the benefits of
storing data electronically.

I

The traditional approach usually consisted of custom built data
processes and computer information systems tailored for a
specific business function. An accounting department would
have their own information system tailored to their needs,
where the sales department would have an entirely separate
system for their needs.

5

Separate information systems for each business function also
led to conflicts of interest within the company. Departments
felt a great deal of ownership for the data that they collected,
processed, and managed which caused many issues among
company-wide collaboration and data sharing. This separation
of data also led to unnecessary redundancy and a high rate of

unreliable and inconsistent data.

iy

Initially, these separate systems were very simple to set up as
they mostly mirrored the business process that departments
had been doing for years but allowed them to do things faster
with less work. However, once the systems were in use for so
long, they became very difficult for individual departments to
manage and rely on their data because there was no reliable
system in place to enforce data standards or management.

E-DATABASE DESIGN

DBMS FUNCTIONS

/W W ' t.ransformation /« /_‘(D_a:ﬁy’
E Say > presemanon \/ mtegrity

storage :
management

- management _/)
A A

DBMS
FUNCTION

__/\\? / %
\ Database 1
language and
% application /;]
programming |~

4 Securty
~ management \

' @
i~ _)_/L_
e W) Tﬂ\%
Database | 2 | Multi-user \
/‘ communication '\ access j
mterfaces k control \l,

i i

\/w E __{f’w” k4 ;
_‘-\“—’\\ .' Data / Data storage 5 ’\x_f_/
integrity management \j

' manﬂgemcm

W o

E-DATABASE DESIGN

ADVANTAGES AND DISADVANTAGES OF DBMS'’S

Control of data

redundancy,
consistency,
| abstraction,
- sharin
/" Improved data ™\ g I crese
integrity, -
secfritw productivity,
f “t f concurrency,
enoreement @ Advantages of backup and
standards and
economy of DBMSs recovery
services,

\ scale. /

Improved data
accessibility,
responsiveness,
maintenance

Balanced

conflicting
requirements

Disadvantages of

DBMSs
? Complexity, Higher impact .
size, cost of of a failure

DBMSs

N

E-DATABASE DESIGN

DISADVANTAGES OF TRADITIONAL APPROACH TO INFORMATION
PROCESSING

Separated and
Isolated Data

Data
Dependence

Duplication
of data

Disadvantages

Concurrent
Access
Anomalies

Data Security

Data Inflexibility

E-DATABASE DESIGN

IMPORTANCE OF HAVING DBMS

Controlling
Redundancy

Restricting
unauthorized
access

Integrity can
be enforced

Data can be
shared

Solving
Enterprise
Requirement
than Individual
Requirement

Cost of

developing and
maintaining
Providing Adv;r::f:s ﬂf system is lower

Backup and
Recovery

Data Model

Cost of can be
developing and developed
maintaining

system is lower

Standards can Inconsistency | Concurrency
be enforced i b Control
avoided

E-DATABASE DESIGN

DATABASE ARCHITECTURE

A
Distributed <
Database

Centralized <
Database

\

e is a database that is under the control of a central
database management system (DBMS) in which
storage devices are not all attached to a common CPU.
It may be stored in multiple computers located in the
same physical location, or may be dispersed over a
network of interconnected computers.

e Collections of data (e.g. in a database) can be
distributed across multiple physical locations. A
distributed database can reside on network servers on
the Internet, on corporate intranets or extranets, or
on other company networks. The replication and
distribution of databases improves database
performance at end-user worksites.

e has all its data on one place. As it is totally different
from distributed database which has data on
different places. In centralized database as all the data
reside on one place so problem of bottle-neck can
occur, and data availability is not efficient as in
distributed database.

15

UNDERSTAND DATA MODEL

E-DATABASE DESIGN

-

_

~

Data models define
how the logical
structure of a database
is modeled. Data

Models are

fundamental entities to
introduce abstraction in

a DBMS.

4 N\)
Data models The very first
define how data model
datais could be flat
connected to data-models,

each other and
how they are

J

where all the
data used are

(

Earlier data

\

models were not
so scientific, hence
they were prone
to introduce lots
of duplication and
update anomalies

processed and to be keptin
stored inside the same
the system place.
. /L W,

_

J

LOGICAL DATA MODEL

E-DATABASE DESIGN

TYPES OF LOGICAL DATA MODEL

Object Based Logical Model Record Based Logical Model

‘D Entity Relationship Data

Model D Hierarchical data model

[C] Network data model

D Relational data model

THREE LEVEL ARCHITECTURE OF DBMS

&

End users

I i

lView1][Viewz |

Extemalv@ \ /
External Schema , External / Conceptual
Mapping

Conceptual Schema| Conceptual Level
h

Conceptual / Internal
Mapping

y

Internal Schema Physical Level

]

Database

Fig. Three Level Architechture of
DBMS

17

E-DATABASE DESIGN

Three Level
Architecture
of DBMS

e It shows the architecture of DBMS.

e Mapping is the process of transforming request response

between various database levels of architecture.

e The goal of the three-schema architecture is to separate the

user applications and the physical database.

e Mappingis not good for small database, because it takes more

time.

e In External / Conceptual mapping, DBMS transforms a request
on an external schema against the conceptual schema.
e In Conceptual / Internal mapping, it is necessary to transform

the request from the conceptual to internal levels.

Conceptual
Level

Conceptual level describes the
structure of the whole database for a
group of users.

Itis also called as the data model.

Conceptual schema is a representation
of the entire content of the database.

These schema contains all the
information to build relevant external
records.

These schema contains all the
information to build relevant external
records.

It hides the internal details of physical

18

E-DATABASE DESIGN

Physical Physical level describes the physical storage structure
Level of data in database.

Itis also known as Internal Level.

This level is very close to physical storage of data.

At lowest level, it is stored in the form of bits with the
physical addresses on the secondary storage device.

At highest level, it can be viewed in the form of files.

The internal schema defines the various stored data
types. It uses a physical data model.

External External level is related to the data which is viewed by
Level individual end users.

This level includes a no. of user views or external
schemas.

This level is closest to the user.

External view describes the segment of the database
that is required for a particular user group and hides
the rest of the database from that user group

E-DATABASE DESIGN

External
Level

Conceptual
Level

Physical
Level

¢ External level is related to the data which is viewed
by individual end users.
¢ This level is closest to the user.

¢ This level includes a number of user views or external
schemas.

e External view describes the segment of the database
that is required for a particular user group and hides
the rest of the database from that user group

e Conceptual level describes the structure of the whole
database for a group of users.

e It is also called as the data model.

e Conceptual schema is a representation of the entire
content of the database.

e These schema contains all the information to build
relevant external records.

e These schema contains all the information to build
relevant external records.

¢ |t hides the internal details of physical storage.

¢ Physical level describes the physical storage structure
of data in database.

e |t is also known as Internal Level.

* This level is very close to physical storage of data.

o At lowest level, it is stored in the form of bits with
the physical addresses on the secondary storage
device.

¢ At highest level, it can be viewed in the form of files.

¢ The internal schema defines the various stored data
types. It uses a physical data model.

20

E-DATABASE DESIGN

QUESTIONS

Chapter 1 Exercise: Fundamentals of Database Management

System

1. Discuss the information needs of a: (a) bank, (b) shopping, (c)
restaurant, (d) student registration, (e) and (f)
2. List and discuss the characteristic of good database design.

3. Differentiate database and database management system

21

CRVARIIE

RELATIONAL DATA MODEL

In this chapter, you will:

e Understand Relational Databases

e Understand Operators of Relational Algebra

E-DATABASE DESIGN

RELATIONAL DATA MODEL

@

©

A relational database is a digital database based on
the relational model of data, as proposed by E. F. Codd in
1970. A software system used to maintain relational databases
is a relational database management system (RDBMS).
Virtually all relational database systems use SQL (Structured
Query Language) for querying and maintaining the database

Top 30 Most Popular
Database Management
Software

Some popular RDBMS packages are Oracle RDBMS, IBM DB2, Microsoft SQL Server, SAP
Sybase ASE, Teradata, ADABAS, MySQL, FileMaker, Microsoft Access, Informix, SQLite,
PostgreSQL, Amazon RDS, MongoDB, Redis etc.

Relational versus Non - Relational Databases

RELATIONAL VS. NON-RELATIONAL DATABASES
P ———,

2 i -

A non-relational database

Biog, o Blog Tags does not incorporate the

= table model Instead, data
- | i <. can be stored in a single
| W | document file,
H__n
et =
e | Blog <]
EGPMIRCHE |__ A relational database table

i R4 L. W organizes structured data
TS fields into defined columns.

22

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/E._F._Codd
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/SQL

E-DATABASE DESIGN

Relational Data Structure. (Components of database tables)

Table also called Relation

Domain
Ex: NOT UL

Primary Key

1_ Google Active “\

2 Amazon Active —Tuple OR Row
3 Apple Inactive ~ Total # of rows is Cardinality
=t . //_
\\- /

Colurhn OR Attributes

Total # of column is Degree

COMPONENTS OF DATABASE TABLES

‘ Relation => a table with columns and rows. \

‘ Attribute(field) => a named column of a relation \
‘ Domain -> the set of allowable values for one or

more attributes \

‘ Tuple(record) —> a record of a relation \

‘ Cardinality --> a number of tuple in relation \
‘ Degree —> a number of atiribute in a relation \

Primary Key --> the column or columns that contain values
that uniquely identify each row in a table.

23

E-DATABASE DESIGN

PROPERTIES OF RELATIONAL TABLE

The table has a name that is distinct from
all other tables in the database.

Each cell of the table contains exactly one
value (atomic)

Each column has a distinct name (technically
called the attribute name)

The order of columns and rows is immaterial
Each row (record) is distinct, there are no
duplicate records

RELATIONAL MODEL SCHEMA AND EVENTS

Q

v" Relation schema is a name relation defined by a

set of attribute and domain name pairs.

o LetAl, A2..... An be attributes with domains
D1, D2....Dn. then, the set {A1:D1,
A2:D2.....An:Dn} is a relation schema.

Or more correctly:

{(branchNo : B005, street:22 Deer Rd, city:London,
postcode: SW1 4EH)}

J

24

E-DATABASE DESIGN

9

(D«

Relational database schema is a set of

relation schemas, each with a distinct
name.
If R1, R2.... Rn are a set of relation
schemas, then we can write the
relational database schema, or
simply relational schemas, R as:
R = {R1, R2.....Rn}Example:

Branch (branchNo, street, city, state,

zip code, mgrStaffNo)

25

E-DATABASE DESIGN

RELATIONAL INTEGRITY

PE—

Definition - The attributes which has a relation with the domain. The

relational integrity has a constraint which is called domain constraint

Null

A special column value, distinct from 0, blank, or any other
value that indicates that the value for the column is missing or
otherwise unknown.

Entity

Each instance of an entity (type) must have a unique primary
key value that is not null. Null means empty, not blank or

Integrity Zero.

This refers to rules about the relationship between entities. A
referenced item in one table (entity) must exist in another

Referential (related) table. for example, if there is a reference to a
Integrity product code in one table, then information about that product

(e.g, product name, unit price) must exists in another table.

RELATIONAL MODEL RELATIONSHIPS

‘ One to many relationship

‘ Many to many relationship

referencing relationship

26

RELATIONAL ALGEBRA

E-DATABASE DESIGN

r

The data in relational tables are of limited value unless the data can be

manipulated to generate useful information.

Relational algebra defines the theoretical way of manipulating table

contents using the relational operators: SELECT, PROJECT, JOIN,

INTERSECT, UNION, DIFFERENCE and PRODUCT.

Cartesian Product

OPERATOR SYMBOL
Selection 6
Projection 113
Renaming P
Union L
Intersection M
Difference -
X

Join D:(]
Logical AND A
Logical OR v
Logical NOT i

27

E-DATABASE DESIGN

Example : The table Employee

e m—

R r—

nostaff 2 name § salary
/ /
123 Aisyah 5000
/ i
289 | Zahra | 6000
666 Azib 7000
Projection
PROJECT saiary (Employee)
M salary (Employee)
Result:
salary
§ 5000 |
; /
; /
; #
6000
; 7000 |
; /
! !
Selection
SELECT salary <7000 (Employee
6 salary <7000 (Employee)
Result :
nostaff name salary
1123 | Aisyah 5000 ;
i i !]
J J s J
289 Zahra 6000

28

AR

LT

E-DATABASE DESIGN

Projection & Selection

PROJ ECTname, salary (SELECTsaIary <7000 (EM PLOYEE))
H name, salary (6 salary < 7000 (EMPLOYEE))

or, step by step, using an intermediate result

Temp <- SELECT satary <70000(EMPLOYEE)
ReSUIt <- PROJ ECTname, salary(Temp)

Or Temp <- 6 salary <7000O(EMPLOYEE)

Result <- H name, salary(T€MP)

Result :
name salary
Aisyah 5000
Zahra 6000

Cartesian Product

N

N

EMPLOYEE DEPARTMENT
enr | ename |dept dor dname
1 |Ahlmad A A Marketing
2 |Sarah |[C B |Sales
3 [Sabri A C |Legal

29

E-DATABASE DESIGN

Result : EMPLOYEE X DEPARTMENT

enr ename dept dnr dname

1 Ahmad A A Marketing
1 Ahmad A B Sales

1 Ahmad A C Legal

2 Sarah C A Marketing
2 Sarah C B Sales

2 Sarah C C Legal

3 Sabri A A Marketing
3 Sabri A B Sales

3 Sabri A C Legal
Natural Join

SELECTgept =dnr EMPLOYEE X DEPARTMENT) or

EMPLOYEE JOINgept=danr DEPARTMENT

EMPLOYEE D(] dept=dnr DEPARTMENT

Result :
enr ename dept dnr dname
1 Ahmad A A Marketing
2 Sarah C C Legal
3 Sabri A A Marketing

30

E-DATABASE DESIGN

UNION, INTERSECTION AND DIFFERENCE

% All of these operations take two input relations, which must be

union-compatible:

Same number of fields.

“Corresponding’ fields have the same type.

Example :
S1
sid [sname |rating |age
22 |dustin 4 45.0
31 |lubber 8 55.5
58 |rusty 10 |[35.0
S2
sid |sname |rating |age
28 |yuppy 9 35.0
31 |lubber 8 55.5
44 | guppy) 35.0
58 |rusty 10 35.0

31

Union

E-DATABASE DESIGN

sid |sname | rating |age
22 |dustin |7 45.0
31 |lubber |8 55.5
58 |rusty 10 35.0
44 |guppy |5 35.0
28 |yuppy |9 35.0
S1US2
Intersection
sid |sname |rating |age
31 |lubber |8 55.5
58 |rusty |10 35.0
S1INS2
Difference
sid |sname |rating |age
22 |dustin |7 45.0

S1-S2

32

E-DATABASE DESIGN

QUESTIONS
Chapter 2 Exercise: Relational Data Model

1. Define the term relational data model. List the characteristic of this model
2. Explain the relational data structure:

a. Relation

b. Attribute (field)

c. Domain

d. Tuple (record)

e. Degree

f. Cardinality

g. Relational database
3. Explain the terms (a) primary key, (b) foreign key and (c) composite key.
4. List and discuss the major components of a relational database environment.

5. Based on table 2.1, extract and combine the data from Professor and Student table.

Table 2.1: Professor and student tables

Professor Student
FN LN FN LN
John Smith _Susan_| Yao |
Ricardo Brown Ramesh | Shah
Susan Yao Barbara | Jones
Francis Johnson Amy g Ford
Ramesh Shah Jimmy | Wang

Professor Union Student (Professor U Student)
Professor Intersection Student (Professor N Student)

Professor difference Student (Professor - Student)

oo o

Student difference Professor (Student - Professor)

33

CEAPTIER

ENTITY E-R MODEL &
NORMALIZATION

In this chapter, you will:

o Apply E-R Diagram(ERD) in database development
e Apply the Normalization

E-DATABASE DESIGN

ENTITY RELATIONSHIP DIAGRAM

Entity Relationship modelling was develop for database
design by Peter Chen in 1976

is a graphical representation of the database system

provides a high-level conceptual data model

supports the user's perception of the data

is composed of entities, attributes, and relationships

3 BASIC COMPONENT

ENTITIES ATTRIBUTES RELATIONSHIPS

34

E-DATABASE DESIGN

Notation

— Chen’s Model

— Crow’s Foot

Example : Crow’s Foot Model

STUDENT COURSE INSTRUCTOR
*student_id la takes ,/ ‘ teaches | finstructor_no
student_name gl 5 *course_name 7 ™1 instructor_name
student,_address *caurse_aumber instructor faculty

F I
z g
w
3 I
SEAT CLASS
- *course_name
RS *section_number
sest.postion num_registered
class_date_time
¥
3
o PROFESSOR

b *professor_id

SECTION teaches professor_name
i professor_faculty
pO

*section_number

35

E-DATABASE DESIGN

Crow's Foot notation
Entty
[(with no attrbutes)
| Entity
(wih attributes field)
Entity
{attributes field with columas)
Entity
(attributes field with columns and
| variable number of rows)
Relationships
(Cavdinalty and Modality)
20 Zero or More
b One or More
One and only
One

) ZeroorOne

0 M4 ‘
M:A

MA

Many-to-Many

. MM ¢

a one through many notation on one side of a relationship
and a one and only one on the other

42610 through many notation on one side of a relationship
and a one and only one on the other

a one through many notation on one side of a relationship
and a zero or one notation on the other

a 2610 through many notation o one side of a relationship
and a 26ro or one notation on the other

3 zero through many on both sides of a relationship

aone through many on both sides of a refationship

azero through many on one side and a one through many
on the other

aone and only one notation on one side of a relationship
and a zero o one on the other

aone and only ane notation on both sides

One and only one (1)

One or many (1..%)

Zero or one o many (0..*)

ZLero orone (0.. 1)

36

E-DATABASE DESIGN

Example : Chen’s Model

@ [Gn:;‘g Id '
\\‘
[Subject | |I Group
€ pate N Markid)
Ginnic > . E ;
.fsupeny-— ‘[Mark |
M - .‘belong
3 Teacher i |
=3 Sfidentld = =

First Name

Student

- e ——— "
Last Name

Chen's notation

Entity _ Entity f .;».1_|;r|—n:u§ - E Atiribara
Weak Entity Wieak Entity |'_-_r @ / Key attribute
B _'_-__ N T,
Retstionship |_l.:..-e%_k£,-_;;g-iim1: Waeak key attributs
1 Iderdifying Refationship | HD-a-hr_ivu_;m'_h'il_:l-l:ﬁE' J Dvarives atiribute
= h.;_m;%d.i.,% .m’ Adsociatve Entity uf;.nm%i_u;hu? Muitivaiue atrbute

37

E-DATABASE DESIGN

Participations

Cardinaglity can be shown or hidden

Mandatory

Optional

{0:1)

(1:1)

10N

11:M)

[LAE]

{1:M)

{0:1)
(1:1)

------ (O:N)

(1N}
{0:M)
(1M}

Recursive Relationship
Cardinality can be shown or hidden

(o:1)

(1:1)

(o)

(1:M)

(DN

(1M

Entity

An entity is an

object or concept
about which you

want to store
information.

Weak

Entity

A weak entity
is an entity
that must
defined by a
foreign key
relationship
with another
entity as it
cannot be
uniquely
identified by
its own
attributes
alone.

38

Z

Z

I,

SRR,

i

Z

Z

RN RN,

7

ENTITY IDENTITY

PERSON

PLACE

OBJECT

EVENT

CONCEPT

E-DATABASE DESIGN

- EXAMPLE

4
g
:
:
g
#

STAFF, STUDENT, LECTURER,EMPLOYEE

o

/ DISTRICT, TOWN, STATE

%

R

BUILDING, TOOL, PRODUCT

: SALE, REGISTRATION, APPLICATION

%

%

RN RN,

COURSE, ACCOUNT

Guidelines for naming and defining entity types

- An attribute name is a noun -

= An attribute name should be unique X

To make an attribute name unique and clear, each
|— attribute name should follow a standard format -|

Similar attributes of different entity types should use
|— similar but distinguishing names. —|

39

| BN,

SRR,

RN,

E-DATABASE DESIGN

Example of Attribute

First Last

Birthdate
Name

[Composiy,
altribyte Person /
==

By e = =
; \ @
derived multivalued ;é"

7~ attribute ‘\ 17 3

attribute
‘ \ﬂ‘“—*‘_/‘/ \EJ__,/*—) J

IDENTIFIER

Characteristic of Identifier

K/
*

% Will not change in value
% Will not be null

40

E-DATABASE DESIGN

* An identifier that could be a key that satifies
the requirements for being a key.
*Some entities may have more than one
Candidate candidate key
key < *EXx: A candidate key for EMPLOYEE is
Employee_ID, a second is the combination
of Employee_Name and Address.
*|f there is more than one candidate key,
g need to make a choice.
Ide.nhf'er * A candidate key that has been selected as
(Primary < the unique identifying characteristic for an
Key) entity type
Identifier (Key)

Student Name

TR

STUDENT

Phone_Number,

Referential (Key)

A
-

STU

DENT

COURSE

courseMName

E-DATABASE DESIGN

Foreign Keys

dentld ame . ourseld
LO001254 James Harradine ADO4
s042

L0001198 Simon McCioud

I Relationship

Primary Keys ———> courseld l courseName

RELATIONSHIPS

- Associations between instances of one or more entity
types that is of interest

< Given a name that describes its function.

- relationship name is an active or a passive verb.

7

, Relationship name:
£ i &

s [

An author writes one or more books
Abook can be written by one or more authors.

42

E-DATABASE DESIGN

Degree of Relationships

» Degree: number of entity types that participate in a

relationship
» Three cases :

e Unary: between two instances of one entity type

e Binary: between the instances of two entity types
e Ternary: among the instances of three entity types
e Higher Degree

Unary Binary

Ternary

Cardinality and Connectivity

eone-to-many
Connectivity eone-to-many
emany-to-many

~ *minimum and maximum number of instances of
Entity B that can (or must be) associated with each
instance of entity A.

Cardinality < eCardinality specifies how many instances of an entity

relate to one instance of another entity.

43

E-DATABASE DESIGN

This is described by the cardinality of the relationship, for which there
= are four possible categories.

r— One to one (1:1) relationship

— One to many (1:m) relationship

— Many to one (m:1) relationship

Many to many (m:n) relationship

* A single entity instance in one entity
class is related to a single entity instance

One to One in another entity class.
Relationship (1:1) *Example : Each student fills one seat
and one seat is assigned to only one
student.

* A single entity instance in one entity
class (parent) is related to multiple entity
One to Many instances in another entity class (child)

Relationship (1:M) *Example : One instructor can teach
many courses, but one course can only
be taught by one instructor

*Each entity instance in one entity class is
related to multiple entity instances in

Many to Many another entity class; and vice versa.
Relationship (M:N) *Example : Each student can take many
classes, and each class can be taken by
many students.

44

E-DATABASE DESIGN

Cardinality Optional

(0,1) - zero or one (Optional one)

(1,n) -one or more (Mandatory many)
(0,n) - zero or more (Optional many)
(1,1) - one and only one (Mandatory one)

1
Employee .

/ (0,4)

. Parking Space

(0,1)

Cardinality Mandatory

Class

1.4 01
oCardinality

Professor

45

E-DATABASE DESIGN

Associate Entities

B

o known as Composite Entities or Bridge Entities
It’s an entity — it has aftributes
AND it’s a relationship - it links entities together

When should a relationship with attributes instead be an
associative entity?

O The relationship should be many-to-many.

O Composed of the primary keys of each of
the entities to be connected

O May also contain additional attributes that
play no role in the connective process

Examples of associate entity

=
|

<bran chD
—) STAFF W

M
/f;ame ol STAFF ALLOC BRANCH
K ATION
=

¥ .
/ / g Qanchhd@
hoursPer
@n_c@ WEQD

46

E-DATABASE DESIGN

NORMALIZATION

Database normalization is the process of organizing the
fields and tables of a relational database to minimize
redundancy

The objective is to isolate data so that additions, deletions,
and modifications of a field can be made in just one table
and then propagated through the rest of the database
using the defined relationships. Database Normalization
Steps From TNF to 3NF.

Normalization usually involves dividing large tables into
smaller (and less redundant) tables and defining
relationships between them

We have to normalize the database in order to make it
easier to maintain, develop, or to resolve the error.
It will be several steps to do, but usually it just only need
till the third step.

The goal of a relational database design is to generate a set
of relation scheme that allow us to store information easily.

47

E-DATABASE DESIGN

Benefits of Normalization

Normalization produces smaller tables with smaller rows

Searching, sorting, and creating indexes is faster,
since tables are narrower, and more rows fit on a
data page.

Normalization is conceptually cleaner and easier
to maintain and change as your needs change.

Q Data modification anomalies are reduced.

More tables allow better use of segments to control
physical placement of data.
The cost of finding rows already in the data cache is extremely
low.

48

E-DATABASE DESIGN

Functional Dependency

¢ A functional dependency occurs when
one attribute in a relation uniquely
determines another attribute. This can
be written A -> B which would be the
same as stating "B is functionally
dependent upon A."

Definition <

AY 4

¢ In a table listing employee
characteristics including Social Security
Number (SSN) and name, it can be said
that name is functionally dependent
upon SSN (or SSN -> name) because an
Example < employee's name can be uniquely
determined from their SSN. However,
the reverse statement (name -> SSN) is
not true because more than one
employee can have the same name but
different SSNs.

Transitive Dependencies

~

* Transitive dependencies occur when
Definition =< there is an indirect relationship that
causes a functional dependency

* For example, "A -> C” is a transitive
Example < dependency when it is true only because
both “A -> B” and “B -> C” are true

49

E-DATABASE DESIGN

Example Of A transitive dependency occurs in the following relation:

Book Genre Author AUt!‘ or .
Nationality
Twenty Thousand Leagues Science Fiction Jules Verne French
Under the Sea
Journey to the Center of the Science Fiction Jules Verne French
Earth
Walt i
Leaves of Grass Poetry Whitman American
Anna Karenina Literary Fiction Leo Tolstoy Russian
Religi
A Confession € |g|9us Leo Tolstoy Russian
Autobiography

The functional dependency {Book} — {Author Nationality} applies; that
is, if we know the book, we know the author's nationality. Furthermore:

e {Book} — {Author}
e {Author} does not — {Book}
o {Author} — {Author Nationality}
Therefore {Book} — {Author Nationality} is a transitive dependency.

Transitive dependency occurred because a non-key attribute (Author) was
determining another non-key attribute (Author Nationality).

50

http://en.wikipedia.org/wiki/Twenty_Thousand_Leagues_Under_the_Sea
http://en.wikipedia.org/wiki/Twenty_Thousand_Leagues_Under_the_Sea
http://en.wikipedia.org/wiki/Science_Fiction
http://en.wikipedia.org/wiki/Jules_Verne
http://en.wikipedia.org/wiki/French_people
http://en.wikipedia.org/wiki/Journey_to_the_Center_of_the_Earth
http://en.wikipedia.org/wiki/Journey_to_the_Center_of_the_Earth
http://en.wikipedia.org/wiki/Science_Fiction
http://en.wikipedia.org/wiki/Jules_Verne
http://en.wikipedia.org/wiki/Leaves_of_Grass
http://en.wikipedia.org/wiki/Poetry
http://en.wikipedia.org/wiki/Walt_Whitman
http://en.wikipedia.org/wiki/Walt_Whitman
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Anna_Karenina
http://en.wikipedia.org/wiki/Literary_Fiction
http://en.wikipedia.org/wiki/Leo_Tolstoy
http://en.wikipedia.org/wiki/Russians
http://en.wikipedia.org/wiki/A_Confession
http://en.wikipedia.org/w/index.php?title=Religious_Autobiography&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Religious_Autobiography&action=edit&redlink=1
http://en.wikipedia.org/wiki/Leo_Tolstoy

E-DATABASE DESIGN

First Normal Form (1NF)

A table meets 1st Normal form if it doesn’t have multivalued attribute,
composite attribute or its combination in the same data domain.

Each attribute in that table should have an atomic value (can be
divided).

There are no duplicated rows in the table.

Each cell is single-valued (i.e., there are no repeating groups or arrays).

Entries in a column (attribute, field) are of the same kind.

b

Choose one attribute or a group of attribute to
be the key in the table

Identify redundant groups in the unnormalized
table

Delete the redundant groups

51

E-DATABASE DESIGN

The example below doesn’t meet the 1NF

Ernployes [emp_num, emp_lname, dept__no)

Employee .
Ermp_rdmm enp lrams depwfg Repeating
10052 Jones A0 CEG

10101 Sims LEQ

Normalization creates two tables and moves dept_no to the second table

Errplones 2 rmp_narm, emp rame)

Ermp_dept [ernp_num, dept_no)

Ernpl oyes Emp dept

amp_num emp Irame ermp_num dept_no

10052 Jones 10052 A0

10104 Sims 10052 CHi
10101 (el

52

E-DATABASE DESIGN

Second Normal Form (2NF)

A table is in 2NF if it is in 1NF and if all non-key attributes are dependent on all of
the key.

Since a partial dependency occurs when a non-key attribute is dependent on only
a part of the (composite) key, the definition of 2NF is sometimes phrased as, "A
table is in 2NF if it is in 1NF and if it has no partial dependencies."

A table meets 2NF when the 1NF requirement is met, and all attributes except the
primary key have functional dependency entirely to the primary key

A table doesn’t meet 2NF, if there is an attribute that it’s functional dependency
just partial. Partially dependent on primary key

If there is an attribute that doesn’t have a dependency to the primary key, then
the attribute should be moved or deleted

[Steps to transform 1NF to 2NF }

Vs

Identify primary key to the 1NF relationship (based on the example above, the primary
key is lesson_id)

Identify functional dependencies in the relationship (the FD is lesson_id ->
lesson_name)

If there is partial dependencies to the primary key, delete and place it into new
relationship with the copy of its determinan (lesson_name is deleted from the table
student and move to the new table)

53

E-DATABASE DESIGN

Ermp_dept [2mp_num, dest mo, dept niane=] Depends on
Ermp_dept part of primany
Ermp_rJdnn d=pt_no n:lep'l:_rlligﬁli‘:e
10052 A0 accounting
10074 A0 accounting
10074 LSO development
———e—
Fri mary kay

To normalize this table, move dept_name to a second table

Erp_dept [ermp_rurn,dept mo] - Dept[dept_no, dept_name)

Ermp dept Dept
P _rdmnm dept_no dept_no dept_name
10052 A0 A0 accounting
10074 A0 DEO dewvelopment
—_—
11 DD?:J'_—-h ,—a_D_EiD z Prirmary

Prirmary

54

E-DATABASE DESIGN

3rd Normal Form (3NF)

A table is in 3NF if it is in 2NF and if it has no transitive
dependencies.

When it has met the 2NF, and there is no non primary key
attribute that dependent to the other non primary key, the
table is met 3NF.

[Steps to transform 2NF to 3NF }

Vs

Identify primary key in the 2NF relationship

Identify functional dependencies in the relationship

If there is a transitive dependency to the primary key, delete and place it into new

relationship with the copy of its determinan.

55

E-DATABASE DESIGN

Oept [dept_no, dept_name, mgr_emp_nam, mgr_lname)

primary ke

D=t
dept_no dept_name M SN mgr_lnams
210 doccounting 10073 Johnson
S0 dewvelopment 10029 Wirhite
mAZ0 marketing 100325 Cumont
Ceme=red= om
Oepend on non- ke

The solution is to split the Dept table into two tables. In this case, the Employees table, already

stores this information, so removing the mgr_Iname field from Dept brings the table into Third

Normal Form.

Dept [dept_mno, dept_nars, gy _emp_nanm]

Erployes(enp_rum enp_rane]

Depit

dept no dept _name mgr_ &P _rJanm
A0 dccounting 100732

L0 develop ment 10029

mi20 maketing 100325
l'hu—ﬂd_‘h‘_hh—_-ﬂ'r

Frirmzry

Ermployes
Smp_nJam =np_lrane
10073 John=an
10039 White
10035 Dumant
.""\—I—'_'_\--'__\—\—F'I-
FPrimary

56

E-DATABASE DESIGN

QUESTIONS
Chapter 3 Exercise: Entity Relationship Model and Normalization
1. What is a well-structured relation? Why must a database have well-structured

relations?

2. Whatis ERD?

Entity Basic symbols A special

I entity that is
symbols Strong entty Assocaiwently)50 a
relationship
Weak entity Altribute
Relationship
symbols Attribute
<> s NSRS symbols

sk - s \
@ Kertiying rettionship 1 ! Derived atrbute

Figure 3.1: ERD symbol

3. Based on Figure 3.2, explain the ERD symbol below and give the example for each
symbol.
a. Entity
b. Relationship

c. Attributte

57

E-DATABASE DESIGN

QUESTIONS

is made by

APPOINTMENT
*app_date
DOCTOR *app_time
*doc_physicianidnumber |—O<app duration
doc_firstname app:reason
doc_lastname
is scheduled for
schedules
B, generates
*hill_number H
bill_amountinsured % P{\TIENT
bill_amountnotinsured PAYMENT makes ["pat_idnumber
bill_datesent = - =@ H pat_firsthame
bill_status a2 pay_recenp:number | pat_lasthame
Ay aman I pat_address
pay._dal pat_city
pay_method pat_state

INSURANCE COMPANY

*ins_name
ins_benefitscontact
ins_phonenumber
ins_claimsaddress

Figure 3.2: Insurance ERD

4. Based on Figure 3.2, convert this ERD using Chen Model;

Entity

a0 T p

e. Keys

Attribute

Cardinality

Relationship

58

is insured by

E-DATABASE DESIGN

QUESTIONS

wo

Lt
@ Enfomannm

S SOD

5. Based

Figure 3.3: Warehouse ERD

on Figure 3.3, convert this ERD using using Crow Foot Model
Entity
Attribute
Relationship
Cardinality
Keys

6. What is normalization

7. Why normalization need?

a.
b.

Explain the process of normalization.
Explain and give example of update anomalies. Types of update anomalies
include:
i. Insertion
ii. Deletion
iii. Modification

59

N
CH/ARPTER !

STRUCTURED QUERY LANGUAGE

In this chapter, you will:

e Apply SQL commands to a database

E-DATABASE DESIGN

STRUCTURED QUERY LANGUAGE

4)

SQL stands for
Structured
Query
Language

4)

- J

_ J

SQL lets you
access and
manipulate
databases

(query, insert,
update and
modify data)

4)

SQL is an ANSI
(American
National
Standards
Institute)
standard

- J

SQL DATA TYPES

Each column in a database table is required to have a name and

a data type.

An SQL developer must decide what type of data that will be
stored inside each column when creating a table. The data type
is a guideline for SQL to understand what type of data is
expected inside of each column, and it also identifies how SQL
will interact with the stored data.

60

E-DATABASE DESIGN

SQL Data Types

Binary

Database specific binary objects
(BLOB)

Boolean

True/False values (BOOLEAN)

Character

Fixed width (CHAR) or variable
size (VARCHAR)

Numeric

Integer (INT), Real (FLOAT),
Money (MONEY)

Temporal

Time (TIME), Date (DATE),
Timestamp (TIMESTAMP)

7~ N\
Types of SQL

N

(DDL)
Data Definition

uguage

/J\ o>

(DML)

la e

Data Control

Data manipulation LQg_Uﬁge

(TCL)

Transaction Control

N—

61

E-DATABASE DESIGN

¢ Defining the database
structure and controlling
access the data.

eused to create and destroy
databases and database
objects. These commands will
primarily be used by database
administrators during the
setup and removal phases of a
database project.

eExample: CREATE, ALTER,
DROP, USE.

e|s used to retrieve, insert and modify
database information. These commands
will be used by all database users during
the routine operation of the database.

eExample : SELECT, UPDATE, DELETE,
INSERT INTO

62

E-DATABASE DESIGN

e|s used to control privileges in
Database. To perform any
operation in the database, such
as for creating tables,
sequences or views, a user
needs privileges. Privileges are
of two types,

el. System: This includes
permissions for creating
session, table, etc and all types
of other system privileges.

e2. Object: This includes
permissions for any command
or query to perform any
operation on the database
tables.

e Example: GRANT, REVOKE.

eTCL stands for Transaction Control
Language

e This command is used to manage the
changes made by DML statements.

¢ TCL allows the statements to be grouped
together into logical transactions

e Example : COMMIT, SAVEPOINT,
ROLLBACK, SET TRANSACTION

63

E-DATABASE DESIGN

BASIC DDL COMMAND

e Installing a database management system (DBMS)
on a computer allows to create and manage many
independent databases.

e For example, to maintain a database of customer
contacts for a sales department and a personnel

CREATE < database for HR department. The CREATE

command can be used to establish each of these

databases on the platform. For example, the

command:

CREATE DATABASE employees

® The USE command allows to specify the work
with within the DBMS. For example, to issue
some commands that will affect the employees
database, preface them with the following SQL
command:

USE < USE employees

e It's important to always be conscious of the
database that working in before issuing SQL
commands that manipulate data.

64

E-DATABASE DESIGN

ALTER <

e Once created a table within a database, you may
wish to modify the definition of it. The ALTER
command allows to make changes to the structure
of a table without deleting and recreating it. Take a
look at the following command: ALTER TABLE
personal_info
ADD salary money null

* This example adds a new attribute to the
personal_info table -- an employee's salary. The
"money" argument specifies that an employee's
salary will be stored using a dollars and cents
format. Finally, the "null" keyword tells the
database that it's OK for this field to contain no
value for any given employee.

DROP <<

* The final command of the Data Definition
Language, DROP, allows us to remove entire
database objects from our DBMS. For example, if
we want to permanently remove the personal_info
table that we created, we'd use the following
command:

DROP TABLE personal_info

e Similarly, the command below would be used to
remove the entire employees database:
DROP DATABASE employees

¢ Use this command with care! Remember that the
DROP command removes entire data structures
from your database. If you want to remove
individual records, use the DELETE command of
the Data Manipulation Language.

65

E-DATABASE DESIGN

SQL CONSTRAINTS

> SQL constraints are used to specify rules for the data in a
table.

Constraints are used to limit the type of data that can go
into a table. This ensures the accuracy and reliability of
the data in the table. If there is any violation between the
constraint and the data action, the action is aborted.

Constraints can be column level or table level. Column
level constraints apply to a column, and table level
constraints apply to the whole table.

Syntax ;

CREATE TABLE table_name (
column1 datatype constraint,
column?2 datatype constraint,
column3 datatype constraint,

NOT NULL - Ensures that a column
cannot have a NULL value

UNIQUE - Ensures that all values in a
column are different

Constraints are PRIMARY KEY - A combination of a
commonly used NOT NULL and UNIQUE. Uniguely
in SQL identifies each row in a table

e ————

FOREIGN KEY - Uniquely identifies a
row/record in another table

CHECK - Ensures that all values in a
column satisfies a specific condition

E-DATABASE DESIGN

BASIC DML COMMAND

INSERT <

(—

e The INSERT command in SQL is used to add
records to an existing table. Returning to the
personal_info example from the previous
section, let's imagine that our HR department
needs to add a new employee to their database.
They could use a command similar to the one
shown below:

* INSERT INTO personal_info
values('bart','simpson’',12345,545000)

* Note that there are four values specified for the
record. These correspond to the table attributes
in the order they were defined: first_name,
last name, employee_id, and salary.

SELECT <

® The INSERT command in SQL is used to add
records to an existing table. Returning to the
personal_info example from the previous section,
let's imagine that our HR department needs to
add a new employee to their database. They
could use a command similar to the one shown
below:

¢ INSERT INTO personal_info
values('bart’,'simpson',12345,545000)

* Note that there are four values specified for the
record. These correspond to the table attributes
in the order they were defined: first_name,
last name, emplovee_id, and salary.

DELETE <

* The syntax of this command is similar to that of
the other DML commands. Unfortunately, our
latest corporate earnings report didn't quite
meet expectations and poor Bart has been laid
off. The DELETE command with a WHERE clause
can be used to remove his record from the
personal_info table:

DELETE FROM personal_info
WHERE employee_id = 12345

67

UPDATE <

E-DATABASE DESIGN

® The UPDATE command can be used to modify
information contained within a table, either in
bulk or individually. Each year, our company gives
all employees a 3% cost-of-living increase in their
salary. The following SQL command could be
used to quickly apply this to all of the employees
stored in the database:
UPDATE personal_info
SET salary = salary * 1.03

® On the other hand, our new employee Bart
Simpson has demonstrated performance above
and beyond the call of duty. Management wishes
to recognize his stellar accomplishments with a
$5,000 raise. The WHERE clause could be used to
single out Bart for this raise:
UPDATE personal_info
SET salary = salary + $5000
WHERE employee_id = 12345

68

E-DATABASE DESIGN

SQL DATA DEFINITION COMMANDS

CREATE SCHEMA AUTHORIZATION

Create a database schema

CREATE TABLE

NOT NULL

UNIQUE

PRIMARY KEY

FOREIGN KEY

DEFAULT

CREATE INDEX

CREATE VIEW

ALTER TABLE

CREATE TABLE AS

DROP TABLE

DROP INDEX

DROP VIEW

69

Creates a new table in the user’s
database schema

Ensures that a column will not have
duplicate value

Ensures that a column will not have
duplicate values

Define a primary key for a table
Define a foreign key for a table

Defines a default value for a column
(when no values is given)

Creates an index for a table

Creates a dynamic subset of rows /
columns from one or more tables

Modifies a table’s definition (adds,
modifies, or deletes attributes or

constraints)

Creates a new table based on query in
user’s database schema

Permanently deletes a table (thus its
data)

Permanently deletes an index

Permanently deletes a view

E-DATABASE DESIGN

CREATE SCHEMA AUTHORIZATION Create a database schema

INSERT Inserts row(s) into table

SELECT Select attributes from rows in one or
more tables or views

WHERE Restricts the selection of rows based on
one or more attributes

GROUP BY Groups the selected rows based on the a
conditional expression

HAVING Restricts the selection grouped rows
based on a condition

ORDER BY Orders the selected rows based on one
or more attributes

UPDATE Modifies the attribute’s values in one or
more attributes

DELETE Deletes one or more rows from a table
COMMIT Permanently saves data changes
ROLLBACK Restore data to their original values
COMPARISON OPERATORS Used in conditional expressions
LOGICAL OPERATOR Used in conditional expressions

AND / OR / NOT Used in conditional expressions
SPECIAL OPERATORS Used in conditional expressions
BETWEEN Checks whether an attribute value is

within a range

70

E-DATABASE DESIGN

CREATE SCHEMA AUTHORIZATION

Create a database schema

IS NULL

LIKE

EXIST

DISTINCT

AGGREGATE FUNCTIONS

COUNT

MIN

MAX

SUM

AVG

71

Checks whether an attribute value is null

Checks whether an attribute value
matches a given string pattern

Checks whether an attribute value
matches any value within a value list

Checks whether a sub query returns any
rows

Limits value to unique values

Used with SELECT to return
mathematical summaries on column.

Returns the number of rows with non-
null values for a given column

Returns the minimum attribute value
found in a given column

Returns the maximum attribute value
found in a given column

Returns the sum of all values for a given
column

Returns the average of all values for a
given column.

SOL QUERIES

E-DATABASE DESIGN

With SQL, we can query a database and have a result set
returned.

All queries are based on the SELECT command.

-

_

Syntax:

SELECT column_name(s)

FROM

table_name;

* SELECT, FROM can be written in lower case.

Example:

workerno workername

A01
A02
AO3
A04
A05
A06

JOHN
ANI
DAVID
MARYAM
SALMAH
JENNY

position
MANAGER
ASSISTANT

VICE MANAGER
CLERK
ACCOUNTANT
SYSTEM ANALYST

address
CHERAS
BANGI
BANGI
AMPANG
BANGI
KAJANG

72

entrydate

1995-01-01
1997-05-30
1995-05-01
1996-07-22
1996-07-12
1996-07-30

tel_no
0199292123
0132254040
0182852525
null
0174285445
0137878220

salary
7000
2000
4000
1000
2500
2500

E-DATABASE DESIGN

Example:

SELECT

v Select certain columns:

SELECT workerno, workername FROM worker;

v

Result:

workerno workername

A0l
A02
AO3
A04
AO05
A06

v Select all columns:

JOHN
ANI
DAVID

MARYAM

SALMAH
JENNY

SELECT * FROM worker;

v Result: will display the entire table.

SELECT DISTI

NCT STATEMENT

v The DISTINCT keyword is used to return only distinct (different)
values.
v Consider this table: worker

workerno workername position

AO01
A02
A03
A04
A05
A06

JOHN
ANI
DAVID
MARYAM
SALMAH
JENNY

MANAGER
ASSISTANT

VICE MANAGER
CLERK
ACCOUNTANT
SYSTEM ANALYST

address
CHERAS
BANGI
BANGI
AMPANG
BANGI
KAJANG

73

entrydate

1995-01-01
1997-05-30
1995-05-01
1996-07-22
1996-07-12
1996-07-30

tel_no
0199292123
0132254040
0182852525
null
0174285445
0137878220

salary
7000
2000
4000
1000
2500
2500

E-DATABASE DESIGN

v If we use:

SELECT address FROM worker;

v Result:

address
CHERAS
BANGI
BANGI
AMPANG
BANGI
KAJANG

v If we use:
SELECT DISTINCT address FROM worker;
v Result:

address
CHERAS
BANGI
AMPANG
KAJANG

Calculated Field

v Example:

SELECT workerno, workername, salary /2

FROM worker;

74

E-DATABASE DESIGN

v Result:

workerno workername Salary/2

A01 JOHN 5000.0000
A02 ANI 1000.0000
A03 DAVID 4000.0000
A0O4 MARYAM 3500.0000
A05 SALMAH 1750.0000
A06 JENNY 1750.000

Rename Column

v To rename a column, use AS statement.

v Example:

SELECT workerno AS Number,
workername AS Name

FROM worker;

v Result:

Number Name

A01 JOHN
A02 ANI

A03 DAVID
AO4 MARYAM
A05 SALMAH
A06 JENNY

75

E-DATABASE DESIGN

SQL Where Clause

WHERE clause is to specify a selection criterion.

Syntax:

SELECT column_name(s)
FROM table_name
WHERE conditions;

With WHERE clause, the following operators can be
used:

*in some versions of SQL,
<> operator may be written as !=

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range
WILDCARDS or LIKE Search for a pattern

IN If you know that exact value want to

return for at least one of the columns

76

E-DATABASE DESIGN

Simple Queries

v List all the workers you earn more than 4000.

SELECT workername, salary
FROM worker
WHERE salary >4000;

v Result:

workername salary
JOHN 10000
DAVID 8000
MARYAM 7000

v List all worker who live in Bangi or Kajang.

SELECT workername, address
FROM worker
WHERE address = 'Bangi'

OR address = 'Kajang’;

v Result:

workername address

ANI BANGI
DAVID BANGI
SALMAH BANGI
JENNY KAJANG

77

E-DATABASE DESIGN

v List all the worker who earn between 3000 to 9000.

SELECT workername, salary
FROM worker
WHERE salary BETWEEN 3000 AND 9000;

v Result:

workername salary
DAVID 8000
MARYAM 7000
SALMAH 3500
JENNY 3500

*BETWEEN...AND operator selects a range of data between two values

*can be numbers, texts or dates.

v List the Director and Vice Director.

SELECT workername, position
FROM worker
WHERE position
IN (‘DIRECTOR, 'VICE DIRECTOR');
v Result:

workername position
JOHN DIRECTOR
DAVID VICE DIRECTOR

*IN can be used if you know the exact value that you seek for at least

one of the columns.

78

workerno workername

AO01
A02
A03
A04
A05
A06

E-DATABASE DESIGN

v List the worker who is not living in Bangi.

SELECT workername, address
FROM worker
WHERE address NOT IN ('BANGI');
Or
SELECT workername, address
FROM worker
WHERE address <> 'BANGI;

v" Result:

workername address

JOHN CHERAS
MARYAM AMPANG
JENNY KAJANG

v Find worker who doesn’t have phone number.

v Consider this table : worker

JOHN
ANI
DAVID
MARYAM
SALMAH
JENNY

position address
DIRECTOR CHERAS
SECRETARY BANGI
VICE DIRECTOR BANGI
MANAGER AMPANG
SYSTEM ANALYST BANGI
ACCOUNTANT KAJANG

SELECT workername, tel_no
FROM worker
WHERE tel_no IS NULL;

79

entrydate

1995-01-01
1997-05-30
1995-05-01
1996-07-22
1996-07-12
1996-07-30

tel_no
0199292123
0132254040
0182852525
NULL

NULL
0137878220

salary
10000
2000
8000
7000
3500
3500

E-DATABASE DESIGN

v’ Result:

workername tel_no
MARYAM NULL
SALMAH NULL

Using SQL % Wildcards

In SQL, wildcard characters are used with the SQL

LIKE operator.

SQL wildcards are used to specify a search for a

pattern in a column.

A "%" sign can be used to define wildcards
(missing letters in the pattern) both before and
after the pattern.

— Using LIKE —

80

E-DATABASE DESIGN

/~ The following SQL statement will return "\
persons with first names that start with an 'O":
SELECT *
FROM Persons
WHERE FirstName

\’ LIKE '0%'; J
The following SQL statement will return \

persons with first names that end with an 'a":
SELECT *
FROM Staff
WHERE FirstName

LIKE '%a';

The following SQL statement will return
persons with first names that contain the
pattern’la":

SELECT *

FROM Staff
WHERE FirstName
LIKE '%la%';

v List all the building in Taman Kota.

SELECT buildno, address
FROM building
WHERE address LIKE '%TAMAN KOTA%;

81

E-DATABASE DESIGN

v Result:
buildno address
BO3 6, TAMAN KOTA
BO4 2, TAMAN KOTA

SQL AGGREGATE FUNCTIONS

An aggregate function allows you to perform a calculation on a
set of values to return a single scalar value. We often use
aggregate functions with the GROUP BY and HAVING clauses of

the SELECT statement.

___AVG — calculates the average of
a set of values.

COUNT —counts rows in a
specified table or view.

| MIN — gets the minimum value
in a set of values.

SQL Aggregate Function

MAX — gets the maximum
value in a set of values.

SUM - calculates the sum of
values.

82

http://www.zentut.com/sql-tutorial/sql-group-by/
http://www.zentut.com/sql-tutorial/sql-having/
http://www.zentut.com/sql-tutorial/sql-select/

E-DATABASE DESIGN

SQL AGGREGATE FUNTION EXAMPLES

v AVG v’ COUNT
SELECT AVG (unitsinstock) SELECT COUNT(*)
FROM products; FROM products;
v MIN v MAX
SELECT MIN (unitsinstock) SELECT MAX (unitsinstock)
FROM products; FROM products;
v SUM

SELECT categoryid, SUM (unitsinstock)
FROM products

GROUP BY categoryid;

83

E-DATABASE DESIGN

e

QUESTIONS

Chapter 4 Exercise: Structured Query Language
1. Explain the terms below;
a. Data definition language (DDL)

b. Data manipulation language (DML)

c. Transaction control language (TCL)

2. Based on the figure 4.1, write SQL statement for the following:

N 's
Orders Order Details Products
% orderd | ordID ¥ ProductiD
ContactlD ProdID ProductName
OrderDate Quantity Current Unit Price
UnitPrice UnitsInStock
Width
Height
Depth
Weight

Contacts
ContactiD
FirstName
LastName
Address
ZipCode

PhoneNumber

ZipCodes
ZipCode

City

State

Figure 4.1 Store database
a. Create a store database
b. Create the table below with primary key
c. Update table contacts and add new column state
d. Update table order details and add a new column description

e. Update table product and drop a depth column

3. Based on Figure 4.2, write SQL statement for the following:
a. Find the total of cost, sales and profit
b. Find the minimum and maximum for cost
c. Count the number of product

d. Count the number of product for stationary

84

E-DATABASE DESIGN

ProductID name type cost sales profit
S0001 eraser stationary 0.20 0.50 0.30
S0002 pen stationary 0.50 1.00 0.50
BO0OO1 File book 1.00 2.50 1.50
S0003 glue stationary 0.70 1.50 0.80
S0004 Stapler stationary 2.00 3.50 1.50
B0002 Learn ABC book 2.50 4.00 1.50
B0O003 Magazine book 5.00 7.00 2.00

Figure 4.2 Product table
4. Based on Figure 4.3, write SQL statement for the following:
FName Lname City Age Salary (RM)
Hamizan Kamal Dungun 40 5000
Sarah Firdaus Kemaman 45 5500
Zainuddin Abdullah Dungun 29 3000
Hadi Kamarul Kemaman 27 2700
Haziq Marang 43 4000

Figure 4.3 Employee table

a. Find the total average for age

b. Find the minimum and maximum for salary

c. Count the number of employee

d. Find the Fname that begin with H letter

e. Find the Lname that contains the pattern “a” in employee table.

85

\ /
CHARPTER 5

In this chapter, you will:

e Demonstrate database transaction management

E-DATABASE DESIGN

DATABASE TRANSACTION MANAGEMENT

g)

A transaction symbolizes a unit of work performed within
a database management system (or similar system) against a
database, and treated in a coherent and reliable way
independent of other transactions. A transaction generally
represents any change in a database

G J

To provide reliable units of work that allow correct recovery
from failures and keep a database consistent even in cases of
system failure, when execution stops (completely or
partially) and many operations upon a database remain
uncompleted, with unclear status.

To provide isolation between programs accessing a database

concurrently. If this isolation is not provided, the programs'
outcomes are possibly erroneous.

o J

86

E-DATABASE DESIGN

DATABASE TRANSACTION MANAGEMENT
~

Batch
Transaction

<

On-line
transaction =<
(OLTP)

On-line
transaction <
(OLTP)

N[

* Transactions are accumulated over a period
of time and processed as a single unit, or
batch. For example, a store may update its
sales records every day after the store closes

e OLTP database systems are commonly used
for order entry, financial transactions,
customer relationship management and
retail sales via the Internet. Almost any
business that has a large number of users
who conduct short online transactions needs
an OLTP system. Database queries with
online transaction processing systems are
simple, typically with sub-second response
times and in most cases return relatively few
records. OLTP databases need to operate in
as close to real time as possible.

® OLTP database systems are commonly used
for order entry, financial transactions,
customer relationship management and
retail sales via the Internet. Almost any
business that has a large number of users
who conduct short online transactions needs
an OLTP system. Database queries with
online transaction processing systems are
simple, typically with sub-second response
times and in most cases return relatively few
records. OLTP databases need to operate in
as close to real time as possible.

87

E-DATABASE DESIGN

Batch vs. Real Time Processing

Batch Processing Real-Time Processing

The collection and storage of data, for processingata The immediate processing of data after the
scheduled time when a sufficient amount of data has transaction occurs, with the database being updated

been accumulated at the time of the event
Transactions Master File
Collected and Transaction Transaction updated at Transaction event - Online computer
Organised into File created File stored scheduled occurring — database updating
Batches time periods
Examples: Examples:
* Cheque Clearing * Reservation Systems
* Generation of Bills * Point of Sales Terminals (POS)

* Credit Card Transactions

Advantages / Disadvantages: Advantages / Disadvantages :
* Many transactions are completed at one timeina * Data is processed immediately
single process * The act of processing data is repetitive

* Data takes time to be processed

Batch versus On-Line Transaction Processing

(b) On-Lina Transacton Processing

88

E-DATABASE DESIGN

A transaction in a database system must

maintain Atomicity, Consistency, Isolation

and Durability commonly known as ACID
properties

¥

in order to ensure accuracy,
completeness, and data integrity.

Transaction ACID Properties

Atomic Consistent

“ALL OR NOTHING" Transaction - transform database

< from one consistent state to another
Transaction cannot be subdivided consistent state

Transactions execute independently of Database changes are permanent

one another .
The permanence of the database's
Database changes not revealed to consistent state

users until after transaction has
completed

89

E-DATABASE DESIGN

All types of database access operation which are held
between the beginning and end transaction statements are
considered as a single logical transaction. During the
transaction the database is inconsistent. Only once the
database is committed the state is changed from one
consistent state to another.

Database may be
temporarily in an
Inconsistent state

Database in a during execution Database in a
clonsistent state consistent state

™ .
| Y |

Execution of Transaction

Begin Transaction Erdl Teanzaotion

90

E-DATABASE DESIGN

Transactions and SQL

Q A transaction ends with a COMMIT,
ROLLBACK, or disconnection (intentional or
unintentional) from the database.

0 A transaction begins with the first executable
SQL statement after a COMMIT, ROLLBACK,
or connection to the database

0 Oracle issues an implicit COMMIT before and

after any data definition language (DDL)
statement.

Transaction Begins

. —— Decrament Savings Account
TEDATE Havings accounts

SET balance = bhalance - 500
WHERE account = 3209;

. Increment Checking Account
UPDATE checking_accounts

SET balance = balance + 500
WHERE account = 3208;

_ —— Record in Transaction Journal
INSERT INTC journal VALUES

(journal seq HNEXTVAL, "1E!
3209, 3208, 500);

—— End Transaction

COMMIT WORE;

Transaction Ends

21

E-DATABASE DESIGN

()

A transaction begins when the
first executable SQL statement is
encountered

BEGIN TRANSACTION

@)

Ends the current transaction and
saves any changes made to tabels,
table memo fiiles, or index files
included in a transaction

END TRANSACTION
. J

()
A COMMIT statement is reached in
which case all changes permanently

recorded within the database. The
COMMIT statement automatically
ends the SQL transaction

\ J

()

A ROLLBACK statement is reached
in which case all the changes are
aborted and the database is rolled
back to its previous consistent state

. J

92

E-DATABASE DESIGN

| EXAMPLE

BEGIN TRANSACTION
UPDATE customers
SET ContactName='‘Jenn’

WHERE CustomerId = ‘XYZ' ;

COMMIT TRANSACTION

These statement will writes directly to disk.

| EXAMPLE

BEGIN TRANSACTION

UPDATE customers

SET ContactName='David’
WHERE CustomerId = ‘XYZ’;

ROLLBACK TRANSACTION

The ROLLBACK TRANSACTION statement “undoes” all the work since
the matching BEGIN TRANSACTION

23

E-DATABASE DESIGN

DATABASE TRANSACTION MANAGEMENT

v" To allow many transactions to access the same data at the same
time.

v" Concurrency control mechanism is needed to ensure that
concurrent transactions do not interfere with each other’s
operation.

v" To ensure that several users trying to update the same data do so
in a controlled manner so that the result of the updates is correct.

v' Example: Several reservation clerks try to assign a hotel room; the
DBMS should ensure that only clerk could access each hotel room
at a time for assignment to a customer.

v" Process of managing simultaneous operations on the database

without having them interfere with one another.

94

E-DATABASE DESIGN

Q

Concurrency Control Module

Transaction Finalization Protocol

Begin transaction commil

ransaction Manager Module

; End the transaction's coordination
Feollback transaction

Follback transaction to savepoint

Create a savepoint

DATABASE TRANSACTION MANAGEMENT

Lost Update <

A4

Uncommitted

Data<

Successfully completed update overridden by
another user

Example: T1 withdrawing RM10 from an account
with balX, initially RM100. T2 depositing RM100
into same account. Serially, final balance would be
RM190.

¢ Occurs when one transaction can see intermediate
results of another transaction before it has
committed

e Example: T1 updates balX to RM200 but it aborts,
so balX should be back at original value of RM100.
T3 has read new value of balX (RM200) and uses
value as basis of RM10 reduction, giving a new
balance of RM190, instead of RM90.

25

E-DATABASE DESIGN

Inconsistent .<
Retrieval

The Scheduler <

a .
e Occurs when a transaction calculates an aggregate

or summary function (e.g SUM) over a set of data,
which the other transactions are updating

* The inconsistency happens because the

transaction may read some data before they are
changed and read other data after they are

changed

e Establishes the order in which the operations
within concurrent transaction are executed.

e Interleaves the execution of database operations
to ensure serializability

» To determine the appropriate order,the scheduler
bases its actions on concurrency control algoritms
such as locking or time stamping methods.

Transaction management problem 1:

Initial balance $1000.00

Lost updates

Transaction 1:

Withdraw $400.00 from account 6676

Transaction 2:

Correct execution of transaction

Time TID Step

1 T
2 iR
3 iR
4 T2
5 T2
B T2

Read Balance
Balance-400
Write Balance
Read Balance
Balance+500
Write Balance

!
‘\R Deposit $500.00 into account 6676
-
Lost update
Value Time TID Step Value
stored stored
1000.00 1 T1 ReadBalance 1000.00
600,00 2 T2 Read Balance 1000.00
600.00 3 T1 Balance-400 600.00
' 4 T2 Balance+500 1500.00
1100.00 5 T1 Write Balance 600.00
6 T2 Write Balance 1500.00

p

Lost update

96

E-DATABASE DESIGN

Transaction management problem 2:
uncommitted data

Initial balance $1000.00 J\i.

Transaction 1: z

- Transaction 2:

Start to withdraw $4DDDD from account D‘Epﬂsit sslunnu in account 6676
6676, but decide against it and cancel
transaction.

Correct execution of fransaction Uncommitted data

Time Tid Step Value Time Tid Stap Value
stored stored

1 T1 Read Balance 1000.00 1 T1 Read Balance 1000.00

2 T1 Balance+400 2 T1 Balance-400

3 T1 Write Balance 600.00 3 T1 Write Balance 600.00

4 T1 **ROLLBACK*™ 1000.00 4 T2 Read Balance 600.00

4 T2 Read Balance 1000.00 5] T2 Balance+500

5 T2 Balance+500 6 T1 **ROLLBACK** 1000.00

6 T2 Write Balance 1500.00 7 T2 Write Balance 1100.00

Read uncommitted data

Transaction management problem 3:
Inconsistent retrievals

"~ T2: Update Inventory
- Set Quantity-on-Hand =
Quantity-on-Hand + 800
Where Product = “Towels";
Update Inventory
Set Quantity-on-Hand =
Quantity-on-Hand - 1000
Where Product = “Glass-bowls"™;

T1: Select SUM(Quantity-on-Hand)
From Inventory;
COMMIT;

Inconsistent retrievals:

COMMIT;

Time TID Action Value Total

1 T1 Read Cutlery 1000 1000

2 T2 Read Towels 1500

3 T1 Read Towels 1500 2500

4 T2 Towels = 1500 + 800 2300

5 T1 Read glass bowls 1001 3501

G T2 Read glass bowls 1001

7 T2 zlass bowls = 1001 - 1000 1

a8 T2 FECOMMIT

g T1 Read duvets 200 3701

1m0 T rCOMMIT

97

E-DATABASE DESIGN

The solution:
Use a transaction scheduler

Determine order of concurrent execution
T1 T2 Conflict

Read Read no Scheduler ensures serializability™:
The result of concurrent execution is

Read Write yes . . .
equivalent to a serial execution

Write Read yes
That is,

Write Write yes it appears as if the transactions
are serially executed

“different types of serializability-
next time

98

E-DATABASE DESIGN

DATABASE TRANSACTION MANAGEMENT

¢ A lock is a variable, associated with the data item,

LOCKING < which controls the access of that data item.
METHODS Locking is the most widely used form of the
concurrency control.

.
VR
Locking Methods

N
/J\ VR /J\
Lock Granularity Lock Types Deadlocks
N N N

1. Lock Granularity:

¢ A database is basically
represented as a collection of
named data items

¢ The size of the data item Lock
chosen as the unit of
protection by a concurrency
control program is
called GRANULARITY

Granularity

99

E-DATABASE DESIGN

— Database level

— Table level

Page level

Locking Level
|
|

— Row (Tuple) level

Attributes (fields)
level

¢ At database level locking, the entire

database is locked. Thus, it

prevents the use of any tables in

the database by transaction T2

Database while transaction Tl is being

level locking executed.
¢ Database level of locking is suitable

for batch processes. Being very
slow, it is unsuitable for on-line
multi-user DBMSs.

e At table level locking, the entire
table is locked. Thus, it prevents
the access to any row (tuple) by
transaction T2 while transaction T1
is using the table. if a transaction
requires access to several tables,

Table level each table may be locked.

locking * However, two transactions can
access the same database as long
as they access different tables.
Table level locking is less restrictive
than database level. Table level
locks are not suitable for multi-user
DBMS

100

Page level
locking

Row (Tuple) level
Locking

Attributes (fields)
level Locking

E-DATABASE DESIGN

At page level locking, the entire
disk-page (or disk-block) is

locked. A page has a fixed size such
as4K,8K,16K,32Kandsoon. A
table can span several pages, and a
page can contain several rows
(tuples) of one or more tables.
Page level of locking is most
suitable for multi-user DBMSs.

At row level locking, particular row
(or tuple) is locked. A lock exists
for each row in each table of the
database. The DBMS allows
concurrent transactions to access
different rows of the same table,
even if the rows are located on the
same page

The row level lock is much less
restrictive than database level,
table level, or page level locks. The
row level locking improves the
availability of data. However, the
management of row level locking
requires high overhead cost.

At attribute level locking, particular
attribute (or field) is

locked. Attribute level locking
allows concurrent transactions to
access the same row, as long

as they require the use of different
attributes within the row. The
attribute level lock yields the most
flexible multi-user data access. It
requires a high level of computer
overhead.

101

E-DATABASE DESIGN

2. Lock Types:

Types of locking
techniques

Binarv Lockin Shared/Exclusive Two - Phase
y & Locking Locking (2PL)

a. Binary Locking
y: N\ - =N

If the value of the lock on X is
1, item X cannot be accessed
by a database operation that
requests the item. If the value
of the lock on X is 0, the item
can be accessed when
requested. We refer to the

current value (or state) of the
lock associated with item X as

LOCK(X).
_ -

A binary lock can have
two states or values:
locked and unlocked (or
1 and 0, for simplicity).
A distinct lock is
associated with each
database item X.

Unlock_item (X):
When the transaction is
through using the item, it
issues an unlock_item(X)
operation, which sets

Lock_item(X):

A transaction requests
access to an item X by first
issuing a lock_item(X)

LOCK(X) to 0 (unlocks the
item) so that X may be
accessed by other
transactions. Hence, a binary
lock enforces mutual
exclusion on the data item ;
i.e., at a time only one
transaction can hold a lock.

-

operation. If LOCK(X) = 1,
the transaction is forced to
wait. If LOCK(X) = 0, it is
set to 1 (the transaction
locks the item) and the
transaction is allowed to

K access item X.

E-DATABASE DESIGN

b. Shared / Exclusive Locking

Shared lock :

These locks are reffered as
read locks, and denoted by 'S'.
If a transaction T has obtained

Shared-lock on data item X,
then T can read X, but cannot
write X. Multiple Shared lock
can be placed simultaneously

on a data item.

Exclusive lock :

These Locks are referred as Write
locks, and denoted by 'X'.

If a transaction T has obtained
Exclusive lock on data item X, then
T can be read as well as write X.
Only one Exclusive lock can be
placed on a data item at a time.
This means multipls transactions
does not modify the same data
simultaneously.

103

E-DATABASE DESIGN

c. Two - Phase Locking (2PL)

Two-phase locking (also
called 2PL) is a method or a
protocol of controlling
concurrent processing in
which all locking operations
precede the first unlocking
operation.

A transaction is said to
follow the two-phase
locking protocol if all
locking operations (such as
read_Lock, write_Lock)
precede the first unlock
operation in the transaction

2PL is the standard protocol
used to maintain level 3
consistency 2PL defines how
transactions acquire and
relinquish locks. The
essential discipline is that
after a transaction has
released a lock it may not
obtain any furtherlocks

104

E-DATABASE DESIGN

2 phases
in 2PL

A growing
phase

A shrinking
phase

a transaction acquires all the
required locks without
unlocking any data. Once all
locks have been acquired, the
transaction is in its locked
point

a transaction releases all locks
and cannot obtain any new
lock.

A transaction shows Two-Phase Locking technique.

Time

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

Transaction
Lock - X (A)
Read A
A=A-100
Write A
Lock - X (B)
Read B
B=B+ 100
Write B
Unlock (A)

Unock (B)

Remarks

acquire Exclusive lock on A.

read original value of A

subtract 100 from A

write new value of A

acquire Exclusive lock on B.

read original value of B

add 100to B

write new value of B

release lock on A

release lock on B

105

E-DATABASE DESIGN

3. Deadlocks:

Is a condition in which two
(or more) transactions in a
set are
waiting simultaneously
for locks held by some
other transaction in the

set.

Is also called a Two transactions are
circular waiting mutually excluded
condition where from accessing the

two transactions are next record required
waiting (directly or to complete their
indirectly) for each transactions, also
other called a deadly
DEADLOCK embrace.

Is an impasse that may
result when two or more
transactions are
each waiting for locks to
be released that are held

by the other. Transactions
whose lock requests have

been refused are queued
until the lock can
be granted.

Transaction can
continue because each
transaction in the set is

on a waiting
gueue, waiting for one
of the other
transactions in the set
to release the lock on an
item

E-DATABASE DESIGN

Transaction-A Time

t0
Lock (X) (acquired lock on X) t1

t2
Lock (Y) (request lock on Y) t3
Wait t4
Wait t5
Wait t6
Wait t7

Example :

A deadlock exists two
transactions A and B

- @ 2, |
e o

[)
Transaction A = access data items X
andY
Transaction B = access t‘.‘ta items Y
o .anc’.X.

107

Transaction-B

Lock (Y) (acquired lock on Y)

Lock (X) (request lock on X)
Wait
Wait

Wait

Transaction-A has
aquired lock on X
and is waiting to
acquire lock on y.
While,
Transaction-B has
aquired lock on Y
and is waiting to
aquire lock on X.
But, none of them
can execute
further.

4)

Deadlock detection

- /
4)

Deadlock Prevention

_ J

E-DATABASE DESIGN

e This technique allows deadlock to occur,
but then, it detects it and solves it

* Here, a database is periodically checked for
deadlocks

e |f a deadlock is detected, one of the
transactions, involved in deadlock cycle, is
aborted. other transaction continue their
execution

e An aborted transaction is rolled back and
restarted.

* Deadlock prevention technique avoids the
conditions that lead to deadlocking. It
requires that every transaction lock all
data items it needs in advance

e If any of the items cannot be obtained,
none of the items are locked. In other
words, a transaction requesting a new
lock is aborted if there is the
possibility that a deadlock can occur.

® Thus, a timeout may be used to abort
transactions that have been idle for too
long.

e |f the transaction is aborted, all the
changes made by this transaction are
rolled back and all locks obtained by the
transaction are released. The transaction
is then rescheduled for execution

108

E-DATABASE DESIGN

DATABASE TRANSACTION MANAGEMENT

Database
Recovery

e Y

Database Recovery
Management

/

— ~

\\

Transaction

Database Back-up
Recovery

Database Recovery
-> Restore a database from a given state to a previous
consistent state

-> Atomic Transaction Property (All or None)

-> Backup Levels:
* Full Backup
* Differential Backup
* Transaction Log Backup

-> Database / System Failures:
* Software (0.S., DBMS, Application Programs, Viruses)
* Hardware (Memory Chips, Disk Crashes, Bad Sectors)
* Programming Exemption (Application Program rollbacks)
* Transaction (Aborting transactions due to deadlock

detection)

* External (Fire, Flood, etc)

109

E-DATABASE DESIGN

Transaction Recovery

-> Recover Database by using data in the Transaction Log

-> Write-Ahead-Log — Transaction logs need to be written
before any database data is updated

-> Redundant Transaction Logs — Several copies of log on
different devices

-> Database Buffers — Buffers are used to increase processing
time on updates instead of accessing data on disk

-> Database Checkpoints — Process of writing all updated
buffers to disk > While this is taking place, all other
requests are not executes
* Scheduled several times per hour
* Checkpoints are registered in the transaction log

Database Backup

-> Database backup is a way to protect and restore a
database. It is performed through database replication
and can be done for a database or a database server.

-> Typically, database backup is performed by the RDBMS or
similar database management software.

-> Database administrators can use the database backup
copy to restore the database to its operational state along
with its data and logs. The database backup can be stored

locally or on a backup server.

-> Database backup is also created/performed to ensure a
company’s compliance with business and government
regulations and to maintain and ensure access to
critical/essential business data in case of a disaster or

technical outage

E-DATABASE DESIGN

e

QUESTIONS

Chapter 5 Exercise: Database Transaction Management

1. What is transaction?

2. Explain the properties of transaction:

—

Durability

Figure 5.1 Properties of transaction

3. What is concurrency control?

4. Explain concurrency control algorithm.

5. Why database security is so important? Discuss the impact of a database
failure in (a) an airline, (b) a bank and (c) a politeknik

6. Discuss some of the main technique used to recover from a database failure.

111

m E-DATABASE DESIGN

basic concepts of databases and
2 database design, then turns ‘to creating,.

f)i(')"b‘ulatmg and Tretrieving data using SQL.
Topics such as Database Manageffient System, .
the relational data model, Entity Relationship
Diagfam, mormalization, data %entities and
dataBase :transaction managefment are
covered clearly and concisely. ;:TIThls ‘book
prowdes the conceptual and practm:al
|qformat|on necessary to developya da'l:aba'se
de5|gn and management schem hat ensur'es

optimizing perfosmance. | ; R ;-5? e

| B
HIGHLIGHTS @ .
Database * aE. . -
Database Management System|

&

Data Model At
Relational'Data Model | .
Entify Relationship Model R
Normalization -
Structured Query Language

Database Transaction Management

LI

